32,694 research outputs found
An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation
This paper employs a powerful argument, called an algorithmic argument, to
prove lower bounds of the quantum query complexity of a multiple-block ordered
search problem in which, given a block number i, we are to find a location of a
target keyword in an ordered list of the i-th block. Apart from much studied
polynomial and adversary methods for quantum query complexity lower bounds, our
argument shows that the multiple-block ordered search needs a large number of
nonadaptive oracle queries on a black-box model of quantum computation that is
also supplemented with advice. Our argument is also applied to the notions of
computational complexity theory: quantum truth-table reducibility and quantum
truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the
29th International Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27,
200
Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication
We study nondeterministic multiparty quantum communication with a quantum
generalization of broadcasts. We show that, with number-in-hand classical
inputs, the communication complexity of a Boolean function in this
communication model equals the logarithm of the support rank of the
corresponding tensor, whereas the approximation complexity in this model equals
the logarithm of the border support rank. This characterisation allows us to
prove a log-rank conjecture posed by Villagra et al. for nondeterministic
multiparty quantum communication with message-passing.
The support rank characterization of the communication model connects quantum
communication complexity intimately to the theory of asymptotic entanglement
transformation and algebraic complexity theory. In this context, we introduce
the graphwise equality problem. For a cycle graph, the complexity of this
communication problem is closely related to the complexity of the computational
problem of multiplying matrices, or more precisely, it equals the logarithm of
the asymptotic support rank of the iterated matrix multiplication tensor. We
employ Strassen's laser method to show that asymptotically there exist
nontrivial protocols for every odd-player cyclic equality problem. We exhibit
an efficient protocol for the 5-player problem for small inputs, and we show
how Young flattenings yield nontrivial complexity lower bounds
Physical consequences of PNP and the DMRG-annealing conjecture
Computational complexity theory contains a corpus of theorems and conjectures
regarding the time a Turing machine will need to solve certain types of
problems as a function of the input size. Nature {\em need not} be a Turing
machine and, thus, these theorems do not apply directly to it. But {\em
classical simulations} of physical processes are programs running on Turing
machines and, as such, are subject to them. In this work, computational
complexity theory is applied to classical simulations of systems performing an
adiabatic quantum computation (AQC), based on an annealed extension of the
density matrix renormalization group (DMRG). We conjecture that the
computational time required for those classical simulations is controlled
solely by the {\em maximal entanglement} found during the process. Thus, lower
bounds on the growth of entanglement with the system size can be provided. In
some cases, quantum phase transitions can be predicted to take place in certain
inhomogeneous systems. Concretely, physical conclusions are drawn from the
assumption that the complexity classes {\bf P} and {\bf NP} differ. As a
by-product, an alternative measure of entanglement is proposed which, via
Chebyshev's inequality, allows to establish strict bounds on the required
computational time.Comment: Accepted for publication in JSTA
The quantum adversary method and classical formula size lower bounds
We introduce two new complexity measures for Boolean functions, or more
generally for functions of the form f:S->T. We call these measures sumPI and
maxPI. The quantity sumPI has been emerging through a line of research on
quantum query complexity lower bounds via the so-called quantum adversary
method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [SS04] with the
realization that these many different formulations are in fact equivalent.
Given that sumPI turns out to be such a robust invariant of a function, we
begin to investigate this quantity in its own right and see that it also has
applications to classical complexity theory.
As a surprising application we show that sumPI^2(f) is a lower bound on the
formula size, and even, up to a constant multiplicative factor, the
probabilistic formula size of f. We show that several formula size lower bounds
in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93],
including a key lemma of [Has98], are in fact special cases of our method.
The second quantity we introduce, maxPI(f), is always at least as large as
sumPI(f), and is derived from sumPI in such a way that maxPI^2(f) remains a
lower bound on formula size. While sumPI(f) is always a lower bound on the
quantum query complexity of f, this is not the case in general for maxPI(f). A
strong advantage of sumPI(f) is that it has both primal and dual
characterizations, and thus it is relatively easy to give both upper and lower
bounds on the sumPI complexity of functions. To demonstrate this, we look at a
few concrete examples, for three functions: recursive majority of three, a
function defined by Ambainis, and the collision problem.Comment: Appears in Conference on Computational Complexity 200
Quantum vs. Classical Read-once Branching Programs
The paper presents the first nontrivial upper and lower bounds for
(non-oblivious) quantum read-once branching programs. It is shown that the
computational power of quantum and classical read-once branching programs is
incomparable in the following sense: (i) A simple, explicit boolean function on
2n input bits is presented that is computable by error-free quantum read-once
branching programs of size O(n^3), while each classical randomized read-once
branching program and each quantum OBDD for this function with bounded
two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs
reading each input variable exactly once are shown to require size
2^{\Omega(n)} for computing the set-disjointness function DISJ_n from
communication complexity theory with two-sided error bounded by a constant
smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by
deterministic OBDDs of linear size. The technically most involved part is the
proof of the lower bound in (ii). For this, a new model of quantum
multi-partition communication protocols is introduced and a suitable extension
of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to
this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info
theory corrected and regularity of quantum read-once BPs (each variable at
least once) added as additional assumption of the theorem. Some more informal
explanations adde
A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions
The degrees of polynomials representing or approximating Boolean functions
are a prominent tool in various branches of complexity theory. Sherstov
recently characterized the minimal degree deg_{\eps}(f) among all polynomials
(over the reals) that approximate a symmetric function f:{0,1}^n-->{0,1} up to
worst-case error \eps: deg_{\eps}(f) = ~\Theta(deg_{1/3}(f) +
\sqrt{n\log(1/\eps)}). In this note we show how a tighter version (without the
log-factors hidden in the ~\Theta-notation), can be derived quite easily using
the close connection between polynomials and quantum algorithms.Comment: 7 pages LaTeX. 2nd version: corrected a few small inaccuracie
A Lower Bound for Sampling Disjoint Sets
Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}
- …
