32,694 research outputs found

    An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation

    Full text link
    This paper employs a powerful argument, called an algorithmic argument, to prove lower bounds of the quantum query complexity of a multiple-block ordered search problem in which, given a block number i, we are to find a location of a target keyword in an ordered list of the i-th block. Apart from much studied polynomial and adversary methods for quantum query complexity lower bounds, our argument shows that the multiple-block ordered search needs a large number of nonadaptive oracle queries on a black-box model of quantum computation that is also supplemented with advice. Our argument is also applied to the notions of computational complexity theory: quantum truth-table reducibility and quantum truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27, 200

    Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication

    Get PDF
    We study nondeterministic multiparty quantum communication with a quantum generalization of broadcasts. We show that, with number-in-hand classical inputs, the communication complexity of a Boolean function in this communication model equals the logarithm of the support rank of the corresponding tensor, whereas the approximation complexity in this model equals the logarithm of the border support rank. This characterisation allows us to prove a log-rank conjecture posed by Villagra et al. for nondeterministic multiparty quantum communication with message-passing. The support rank characterization of the communication model connects quantum communication complexity intimately to the theory of asymptotic entanglement transformation and algebraic complexity theory. In this context, we introduce the graphwise equality problem. For a cycle graph, the complexity of this communication problem is closely related to the complexity of the computational problem of multiplying matrices, or more precisely, it equals the logarithm of the asymptotic support rank of the iterated matrix multiplication tensor. We employ Strassen's laser method to show that asymptotically there exist nontrivial protocols for every odd-player cyclic equality problem. We exhibit an efficient protocol for the 5-player problem for small inputs, and we show how Young flattenings yield nontrivial complexity lower bounds

    Physical consequences of P\neqNP and the DMRG-annealing conjecture

    Full text link
    Computational complexity theory contains a corpus of theorems and conjectures regarding the time a Turing machine will need to solve certain types of problems as a function of the input size. Nature {\em need not} be a Turing machine and, thus, these theorems do not apply directly to it. But {\em classical simulations} of physical processes are programs running on Turing machines and, as such, are subject to them. In this work, computational complexity theory is applied to classical simulations of systems performing an adiabatic quantum computation (AQC), based on an annealed extension of the density matrix renormalization group (DMRG). We conjecture that the computational time required for those classical simulations is controlled solely by the {\em maximal entanglement} found during the process. Thus, lower bounds on the growth of entanglement with the system size can be provided. In some cases, quantum phase transitions can be predicted to take place in certain inhomogeneous systems. Concretely, physical conclusions are drawn from the assumption that the complexity classes {\bf P} and {\bf NP} differ. As a by-product, an alternative measure of entanglement is proposed which, via Chebyshev's inequality, allows to establish strict bounds on the required computational time.Comment: Accepted for publication in JSTA

    The quantum adversary method and classical formula size lower bounds

    Get PDF
    We introduce two new complexity measures for Boolean functions, or more generally for functions of the form f:S->T. We call these measures sumPI and maxPI. The quantity sumPI has been emerging through a line of research on quantum query complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [SS04] with the realization that these many different formulations are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function, we begin to investigate this quantity in its own right and see that it also has applications to classical complexity theory. As a surprising application we show that sumPI^2(f) is a lower bound on the formula size, and even, up to a constant multiplicative factor, the probabilistic formula size of f. We show that several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], including a key lemma of [Has98], are in fact special cases of our method. The second quantity we introduce, maxPI(f), is always at least as large as sumPI(f), and is derived from sumPI in such a way that maxPI^2(f) remains a lower bound on formula size. While sumPI(f) is always a lower bound on the quantum query complexity of f, this is not the case in general for maxPI(f). A strong advantage of sumPI(f) is that it has both primal and dual characterizations, and thus it is relatively easy to give both upper and lower bounds on the sumPI complexity of functions. To demonstrate this, we look at a few concrete examples, for three functions: recursive majority of three, a function defined by Ambainis, and the collision problem.Comment: Appears in Conference on Computational Complexity 200

    Quantum vs. Classical Read-once Branching Programs

    Full text link
    The paper presents the first nontrivial upper and lower bounds for (non-oblivious) quantum read-once branching programs. It is shown that the computational power of quantum and classical read-once branching programs is incomparable in the following sense: (i) A simple, explicit boolean function on 2n input bits is presented that is computable by error-free quantum read-once branching programs of size O(n^3), while each classical randomized read-once branching program and each quantum OBDD for this function with bounded two-sided error requires size 2^{\Omega(n)}. (ii) Quantum branching programs reading each input variable exactly once are shown to require size 2^{\Omega(n)} for computing the set-disjointness function DISJ_n from communication complexity theory with two-sided error bounded by a constant smaller than 1/2-2\sqrt{3}/7. This function is trivially computable even by deterministic OBDDs of linear size. The technically most involved part is the proof of the lower bound in (ii). For this, a new model of quantum multi-partition communication protocols is introduced and a suitable extension of the information cost technique of Jain, Radhakrishnan, and Sen (2003) to this model is presented.Comment: 35 pages. Lower bound for disjointness: Error in application of info theory corrected and regularity of quantum read-once BPs (each variable at least once) added as additional assumption of the theorem. Some more informal explanations adde

    A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions

    Full text link
    The degrees of polynomials representing or approximating Boolean functions are a prominent tool in various branches of complexity theory. Sherstov recently characterized the minimal degree deg_{\eps}(f) among all polynomials (over the reals) that approximate a symmetric function f:{0,1}^n-->{0,1} up to worst-case error \eps: deg_{\eps}(f) = ~\Theta(deg_{1/3}(f) + \sqrt{n\log(1/\eps)}). In this note we show how a tighter version (without the log-factors hidden in the ~\Theta-notation), can be derived quite easily using the close connection between polynomials and quantum algorithms.Comment: 7 pages LaTeX. 2nd version: corrected a few small inaccuracie

    A Lower Bound for Sampling Disjoint Sets

    Get PDF
    Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}
    corecore