140 research outputs found

    Quantizers With Uniform Encoders and Channel Optimized Decoders

    Full text link

    Network vector quantization

    Get PDF
    We present an algorithm for designing locally optimal vector quantizers for general networks. We discuss the algorithm's implementation and compare the performance of the resulting "network vector quantizers" to traditional vector quantizers (VQs) and to rate-distortion (R-D) bounds where available. While some special cases of network codes (e.g., multiresolution (MR) and multiple description (MD) codes) have been studied in the literature, we here present a unifying approach that both includes these existing solutions as special cases and provides solutions to previously unsolved examples

    Distributed Functional Scalar Quantization Simplified

    Full text link
    Distributed functional scalar quantization (DFSQ) theory provides optimality conditions and predicts performance of data acquisition systems in which a computation on acquired data is desired. We address two limitations of previous works: prohibitively expensive decoder design and a restriction to sources with bounded distributions. We rigorously show that a much simpler decoder has equivalent asymptotic performance as the conditional expectation estimator previously explored, thus reducing decoder design complexity. The simpler decoder has the feature of decoupled communication and computation blocks. Moreover, we extend the DFSQ framework with the simpler decoder to acquire sources with infinite-support distributions such as Gaussian or exponential distributions. Finally, through simulation results we demonstrate that performance at moderate coding rates is well predicted by the asymptotic analysis, and we give new insight on the rate of convergence

    Multiple Description Quantization via Gram-Schmidt Orthogonalization

    Full text link
    The multiple description (MD) problem has received considerable attention as a model of information transmission over unreliable channels. A general framework for designing efficient multiple description quantization schemes is proposed in this paper. We provide a systematic treatment of the El Gamal-Cover (EGC) achievable MD rate-distortion region, and show that any point in the EGC region can be achieved via a successive quantization scheme along with quantization splitting. For the quadratic Gaussian case, the proposed scheme has an intrinsic connection with the Gram-Schmidt orthogonalization, which implies that the whole Gaussian MD rate-distortion region is achievable with a sequential dithered lattice-based quantization scheme as the dimension of the (optimal) lattice quantizers becomes large. Moreover, this scheme is shown to be universal for all i.i.d. smooth sources with performance no worse than that for an i.i.d. Gaussian source with the same variance and asymptotically optimal at high resolution. A class of low-complexity MD scalar quantizers in the proposed general framework also is constructed and is illustrated geometrically; the performance is analyzed in the high resolution regime, which exhibits a noticeable improvement over the existing MD scalar quantization schemes.Comment: 48 pages; submitted to IEEE Transactions on Information Theor

    Optimal Multiresolution Quantization for Broadcast Channels with Random Index Assignment

    Get PDF
    Shannon's classical separation result holds only in the limit of infinite source code dimension and infinite channel code block length. In addition, Shannon theory does not address the design of good source codes when the probability of channel error is nonzero, which is inevitable for finite-length channel codes. Thus, for practical systems, a joint source and channel code design could improve performance for finite dimension source code and finite block length channel code, as well as complexity and delay. Consider a multicast system over a broadcast channel, where different end users typically have different capacities. To support such user or capacity diversity, it is desirable to encode the source to be broadcasted into a scalable bit stream along which multiple resolutions of the source can be reconstructed progressively from left to right. Such source coding technique is called multiresolution source coding. In wireless communications, joint source channel coding (JSCC) has attracted wide attention due to its adaptivity to time-varying channels. However, there are few works on joint source channel coding for network multicast, especially for the optimal source coding over broadcast channels. In this work, we aim at designing and analyzing the optimal multiresolution vector quantization (MRVQ) in conjunction with the subsequent broadcast channel over which the coded scalable bit stream would be transmitted. By adopting random index assignment (RIA) to link MRVQ for the source with superposition coding for the broadcast channel, we establish a closed-form formula of end-to-end distortion for a tandem system of MRVQ and a broadcast channel. From this formula we analyze the intrinsic structure of end-to-end distortion (EED) in a communication system and derive two necessary conditions for optimal multiresolution vector quantization over broadcast channels with random index assignment. According to the two necessary conditions, we propose a greedy iterative algorithm for jointly designed MRVQ with channel conditions, which depends on the channel only through several types of average channel error probabilities rather than the complete knowledge of the channel. Experiments show that MRVQ designed by the proposed algorithm significantly outperforms conventional MRVQ designed without channel information. By building an closed-form formula for the weighted EED with RIA, it also makes the computational complexity incurred during the performance analysis feasible. In comparison with MRVQ design for a fixed index assignment, the computation complexity for quantization design is significantly reduced by using random index assignment. In addition, simulations indicate that our proposed algorithm shows better robustness against channel mismatch than MRVQ design with a fixed index assignment, simply due to the nature of using only the average channel information. Therefore, we conclude that our proposed algorithm is more appropriate in both wireless communications and applications where the complete knowledge of the channel is hard to obtain. Furthermore, we propose two novel algorithms for MRVQ over broadcast channels. One aims to optimize the two corresponding quantizers at two layers alternatively and iteratively, and the other applies under the constraint that each encoding cell is convex and contains the reconstruction point. Finally, we analyze the asymptotic performance of weighted EED for the optimal joint MRVQ. The asymptotic result provides a theoretically achievable quantizer performance level and sheds light on the design of the optimal MRVQ over broadcast channel from a different aspect

    A constrained joint source/channel coder design and vector quantization of nonstationary sources

    Get PDF
    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm

    Subband Image Coding with Jointly Optimized Quantizers

    Get PDF
    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional
    • …
    corecore