7 research outputs found

    T-spline based unifying registration procedure for free-form surface workpieces in intelligent CMM

    Get PDF
    With the development of the modern manufacturing industry, the free-form surface is widely used in various fields, and the automatic detection of a free-form surface is an important function of future intelligent three-coordinate measuring machines (CMMs). To improve the intelligence of CMMs, a new visual system is designed based on the characteristics of CMMs. A unified model of the free-form surface is proposed based on T-splines. A discretization method of the T-spline surface formula model is proposed. Under this discretization, the position and orientation of the workpiece would be recognized by point cloud registration. A high accuracy evaluation method is proposed between the measured point cloud and the T-spline surface formula. The experimental results demonstrate that the proposed method has the potential to realize the automatic detection of different free-form surfaces and improve the intelligence of CMMs

    PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling

    Full text link
    This paper addresses the problem of generating uniform dense point clouds to describe the underlying geometric structures from given sparse point clouds. Due to the irregular and unordered nature, point cloud densification as a generative task is challenging. To tackle the challenge, we propose a novel deep neural network based method, called PUGeo-Net, that learns a 3×33\times 3 linear transformation matrix T\bf T for each input point. Matrix T\mathbf T approximates the augmented Jacobian matrix of a local parameterization and builds a one-to-one correspondence between the 2D parametric domain and the 3D tangent plane so that we can lift the adaptively distributed 2D samples (which are also learned from data) to 3D space. After that, we project the samples to the curved surface by computing a displacement along the normal of the tangent plane. PUGeo-Net is fundamentally different from the existing deep learning methods that are largely motivated by the image super-resolution techniques and generate new points in the abstract feature space. Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details. Moreover, PUGeo-Net can compute the normal for the original and generated points, which is highly desired by the surface reconstruction algorithms. Computational results show that PUGeo-Net, the first neural network that can jointly generate vertex coordinates and normals, consistently outperforms the state-of-the-art in terms of accuracy and efficiency for upsampling factor 4164\sim 16.Comment: 17 pages, 10 figure

    Quantized global parametrization

    No full text
    corecore