37,696 research outputs found

    Discovering useful parts for pose estimation in sparsely annotated datasets

    Full text link
    Our work introduces a novel way to increase pose estimation accuracy by discovering parts from unannotated regions of training images. Discovered parts are used to generate more accurate appearance likelihoods for traditional part-based models like Pictorial Structures and its derivatives. Our experiments on images of a hawkmoth in flight show that our proposed approach significantly improves over existing work for this application, while also being more generally applicable. Our proposed approach localizes landmarks at least twice as accurately as a baseline based on a Mixture of Pictorial Structures (MPS) model. Our unique High-Resolution Moth Flight (HRMF) dataset is made publicly available with annotations.https://arxiv.org/abs/1605.00707Accepted manuscrip

    Rotation-invariant features for multi-oriented text detection in natural images.

    Get PDF
    Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes

    RadarSLAM: Radar based Large-Scale SLAM in All Weathers

    Full text link
    Numerous Simultaneous Localization and Mapping (SLAM) algorithms have been presented in last decade using different sensor modalities. However, robust SLAM in extreme weather conditions is still an open research problem. In this paper, RadarSLAM, a full radar based graph SLAM system, is proposed for reliable localization and mapping in large-scale environments. It is composed of pose tracking, local mapping, loop closure detection and pose graph optimization, enhanced by novel feature matching and probabilistic point cloud generation on radar images. Extensive experiments are conducted on a public radar dataset and several self-collected radar sequences, demonstrating the state-of-the-art reliability and localization accuracy in various adverse weather conditions, such as dark night, dense fog and heavy snowfall

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography

    Get PDF
    Total variation (TV) is a powerful regularization method that has been widely applied in different imaging applications, but is difficult to apply to diffuse optical tomography (DOT) image reconstruction (inverse problem) due to complex and unstructured geometries, non-linearity of the data fitting and regularization terms, and non-differentiability of the regularization term. We develop several approaches to overcome these difficulties by: i) defining discrete differential operators for unstructured geometries using both finite element and graph representations; ii) developing an optimization algorithm based on the alternating direction method of multipliers (ADMM) for the non-differentiable and non-linear minimization problem; iii) investigating isotropic and anisotropic variants of TV regularization, and comparing their finite element- and graph-based implementations. These approaches are evaluated on experiments on simulated data and real data acquired from a tissue phantom. Our results show that both FEM and graph-based TV regularization is able to accurately reconstruct both sparse and non-sparse distributions without the over-smoothing effect of Tikhonov regularization and the over-sparsifying effect of L1_1 regularization. The graph representation was found to out-perform the FEM method for low-resolution meshes, and the FEM method was found to be more accurate for high-resolution meshes.Comment: 24 pages, 11 figures. Reviced version includes revised figures and improved clarit
    corecore