2,936 research outputs found

    Quantitative relaxometry and diffusion MRI for lateralization in MTS and non-MTS temporal lobe epilepsy.

    Get PDF
    We developed novel methodology for investigating the use of quantitative relaxometry (T1 and T2) and diffusion tensor imaging (DTI) for lateralization in temporal lobe epilepsy. Patients with mesial temporal sclerosis confirmed by pathology (N=8) and non-MTS unilateral temporal lobe epilepsy (N=6) were compared against healthy controls (N=19) using voxel-based analysis restricted to the anterior temporal lobes, and laterality indices for each MRI metric (T1, T2, fractional anisotropy (FA), mean diffusivity, axial and radial diffusivities) were computed based on the proportion of significant voxels on each side. The diffusivity metrics were the most lateralizing MRI metrics in MTS and non-MTS subsets, with significant differences also seen with FA, T1 and T2. Patient-specific multi-modal laterality indices were also computed and were shown to clearly separate the left-onset and right-onset patients. Marked differences between left-onset and right-onset patients were also observed, with left-onset patients exhibiting stronger laterality indices. Finally, neocortical abnormalities were found to be more common in the non-MTS patients. These preliminary results on a small sample size support the further investigation of quantitative MRI and multi-modal image analysis in clinical determination of seizure onset. The presence of more neocortical abnormalities in the non-MTS group suggests a role in seizure onset or propagation and motivates the investigation of more sensitive histopathological analysis to detect and delineate potentially subtle neocortical pathology

    Epilepsziás kutyák mágneses rezonanciás vizsgálata

    Get PDF

    New MR imaging techniques in epilepsy

    Get PDF
    This thesis is concerned with the application of three magnetic resonance (MR) techniques in epilepsy: i.) Fluid attenuated inversion recovery prepared (FLAIR) imaging, ii.) diffusion imaging including diffusion tensor imaging (DTI) and iii.) serial and high resolution imaging of the hippocampus. I assessed the clinical value of fast FLAIR in epilepsy in a study involving 128 patients and of 3D FLAIR in a study involving 10 patients. The conspicuity of neocortical lesions and hippocampal sclerosis was increased. New lesions were detected in 5% of patients. The extent of low grade tumours was best assessed on 3D fast FLAIR images. Fast FLAIR was inferior to standard MR techniques for identifying and heterotopia. I applied newly developed, experimental diffusion imaging techniques. In eight studies using different diffusion imaging techniques involving a total of 50 patients and 54 control subjects I investigated the mobility of water molecules in the human epileptic brain in vivo. I used spin echo diffusion imaging in two studies, echo planar imaging (EPI) based DTI in four studies and EPI diffusion imaging in a patient during focal status epilepticus. Finally, in a preliminary study I attempted to use EPI diffusion imaging as a contrast to visualise transient changes associated with frequent lateralizing spikes. Our findings were: i.) diffusion is increased in hippocampal sclerosis suggesting a loss of structural organization and expansion of the extracellular space, ii.) displaying the directionality (anisotropy) of diffusion is superior to standard imaging to visualise tracts, iii.) anisotropy is reduced in the pyramidal tract in patients with hemiparesis and iv.) in the optic radiation in patients with hemianopia after temporal lobectomy suggesting wallerian degeneration, v.) both developmental and acquired structural abnormalities have a lower anisotropy than normal white matter, vi.) diffusion abnormalities in blunt head trauma are widespread and may include regions which are normal on standard imaging, indicating micro structural damage suggestive of diffuse axonal injury, vii.) focal status epilepticus can be associated with a reduced difflision in the affected cortex, viii.) diffusion imaging may be useful as a contrast for event-related (spike triggered) functional MR imaging. With serial MRI I demonstrated hippocampal volume loss in a patient after generalized status epilepticus and with high resolution imaging of an anatomical specimen and a control subject I showed hippocampal layers on MR images. The results presented in this thesis emphasised the flexibility of MR imaging and its ability to demonstrate abnormalities in vivo. FLAIR imaging is now part of the clinical work up of patients with epilepsy. Diffusion imaging has been shown to be superior to standard imaging to visualise tracts which has far-reaching implications for neurological applications. Diffusion imaging also provides an exciting window to study cerebral micro structure in vivo. Serial imaging allows for the first time the visualisation of temporal changes and high resolution imaging has the prospect of demonstrating hippocampal layers in vivo. MR imaging is a constantly progressing technique. It is hoped that this thesis will help to formulate hypotheses for new MR experiments to study the relationship of dysfunction and structural abnormalities

    Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy.

    Get PDF
    OBJECTIVE: To investigate the histopathological correlates of quantitative relaxometry and diffusion tensor imaging (DTI) and to determine their efficacy in epileptogenic lesion detection for preoperative evaluation of focal epilepsy. METHODS: We correlated quantitative relaxometry and DTI with histological features of neuronal density and morphology in 55 regions of the temporal lobe neocortex, selected from 13 patients who underwent epilepsy surgery. We made use of a validated nonrigid image registration protocol to obtain accurate correspondences between in vivo magnetic resonance imaging and histology images. RESULTS: We found T1 to be a predictor of neuronal density in the neocortical gray matter (GM) using linear mixed effects models with random effects for subjects. Fractional anisotropy (FA) was a predictor of neuronal density of large-caliber neurons only (pyramidal cells, layers 3 and 5). Comparing multivariate to univariate mixed effects models with nested variables demonstrated that employing T1 and FA together provided a significantly better fit than T1 or FA alone in predicting density of large-caliber neurons. Correlations with clinical variables revealed significant positive correlations between neuronal density and age (rs  = 0.726, pfwe  = 0.021). This study is the first to relate in vivo T1 and FA values to the proportion of neurons in GM. INTERPRETATION: Our results suggest that quantitative T1 mapping and DTI may have a role in preoperative evaluation of focal epilepsy and can be extended to identify GM pathology in a variety of neurological disorders

    Quantitative MRI correlates of hippocampal and neocortical pathology in intractable temporal lobe epilepsy

    Get PDF
    Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to investigate histopathological correlates of quantitative relaxometry and DTI from hippocampal and neocortical specimens of intractable TLE patients. To achieve this goal I developed and evaluated a pipeline for histology to in-vivo MRI image registration, which finds dense spatial correspondence between both modalities. This protocol was divided in two steps whereby sparsely sectioned histology from temporal lobe specimens was first registered to the intermediate ex-vivo MRI which is then registered to the in-vivo MRI, completing a pipeline for histology to in-vivo MRI registration. When correlating relaxometry and DTI with neuronal density and morphology in the temporal lobe neocortex, I found T1 to be a predictor of neuronal density in the neocortical GM and demonstrated that employing multi-parametric MRI (combining T1 and FA together) provided a significantly better fit than each parameter alone in predicting density of neurons. This work was the first to relate in-vivo T1 and FA values to the proportion of neurons in GM. When investigating these quantitative multimodal parameters with histological features within the hippocampal subfields, I demonstrated that MD correlates with neuronal density and size, and can act as a marker for neuron integrity within the hippocampus. More importantly, this work was the first to highlight the potential of subfield relaxometry and diffusion parameters (mainly T2 and MD) as well as volumetry in predicting the extent of cell loss per subfield pre-operatively, with a precision so far unachievable. These results suggest that high-resolution quantitative MRI sequences could impact clinical practice for pre-operative evaluation and prediction of surgical outcomes of intractable epilepsy

    7T Magnetic Resonance Spectroscopy of Non-Lesional Temporal Lobe Epilepsy

    Get PDF
    Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy, and one that is generally amenable to surgical treatment when surgery is necessary. Unfortunately, roughly 25-30% of the patient population have no visible lesions on clinical MRI scans. Without anatomical abnormalities to help guide surgical resection, the success of surgical treatment decreases substantially. However, metabolic abnormalities may exist that could allow for accurate localization of epileptic tissue in this cohort. Magnetic resonance spectroscopy (MRS) is a technique that can detect and measure the concentration of metabolically important molecules within tissue, giving insight into the underlying cellular metabolism. In this thesis, non-lesional TLE patients were studied and compared with control subjects using single voxel MRS at a magnetic field strength of 7T for the first time. We hypothesized that metabolite changes in the hippocampus would be associated with seizure lateralization. Non-lesional patients showed altered levels of creatine and choline when compared to healthy controls. These results were in agreement with prior work in the literature showing non-lesional TLE is primarily a result of glial cell proliferation without neuronal atrophy. However, in the patient cohort studied, these metabolites did not effectively lateralize seizure origin, potentially due to the varied underlying pathologies within the patient group

    Microstructural Imaging in Temporal Lobe Epilepsy: Diffusion Imaging Changes Relate to Reduced Neurite Density

    Get PDF
    Purpose: Previous imaging studies in patients with refractory temporal lobe epilepsy (TLE) have examined the spatial distribution of changes in imaging parameters such as diffusion tensor imaging (DTI) metrics and cortical thickness. Multi-compartment models offer greater specificity with parameters more directly related to known changes in TLE such as altered neuronal density and myelination. We studied the spatial distribution of conventional and novel metrics including neurite density derived from NODDI (Neurite Orientation Dispersion and Density Imaging) and myelin water fraction (MWF) derived from mcDESPOT (Multi-Compartment Driven Equilibrium Single Pulse Observation of T1/T2)] to infer the underlying neurobiology of changes in conventional metrics. / Methods: 20 patients with TLE and 20 matched controls underwent magnetic resonance imaging including a volumetric T1-weighted sequence, multi-shell diffusion from which DTI and NODDI metrics were derived and a protocol suitable for mcDESPOT fitting. Models of the grey matter-white matter and grey matter-CSF surfaces were automatically generated from the T1-weighted MRI. Conventional diffusion and novel metrics of neurite density and MWF were sampled from intracortical grey matter and subcortical white matter surfaces and cortical thickness was measured. / Results: In intracortical grey matter, diffusivity was increased in the ipsilateral temporal and frontopolar cortices with more restricted areas of reduced neurite density. Diffusivity increases were largely related to reductions in neurite density, and to a lesser extent CSF partial volume effects, but not MWF. In subcortical white matter, widespread bilateral reductions in fractional anisotropy and increases in radial diffusivity were seen. These were primarily related to reduced neurite density, with an additional relationship to reduced MWF in the temporal pole and anterolateral temporal neocortex. Changes were greater with increasing epilepsy duration. Bilaterally reduced cortical thickness in the mesial temporal lobe and centroparietal cortices was unrelated to neurite density and MWF. / Conclusions: Diffusivity changes in grey and white matter are primarily related to reduced neurite density with an additional relationship to reduced MWF in the temporal pole. Neurite density may represent a more sensitive and specific biomarker of progressive neuronal damage in refractory TLE that deserves further study

    Multivariate Analysis of MR Images in Temporal Lobe Epilepsy

    Get PDF
    Epilepsy stands aside from other neurological diseases because clinical patterns of progression are unknown: The etiology of each epilepsy case is unique and so it is the individual prognosis. Temporal lobe epilepsy (TLE) is the most frequent type of focal epilepsy and the surgical excision of the hippocampus and the surrounding tissue is an accepted treatment in refractory cases, specially when seizures become frequent increasingly affecting the performance of daily tasks and significantly decreasing the quality of life of the patient. The sensitivity of clinical imaging is poor for patients with no hippocampal involvement and invasive procedures such as the Wada test and intracranial EEG are required to detect and lateralize epileptogenic tissue. This thesis develops imaging processing techniques using quantitative relaxometry and diffusion tensor imaging with the aiming to provide a less invasive alternative when detectability is low. Chapter 2 develops the concept of individual feature maps on regions of interest. A laterality score on these maps correctly distinguished left TLE from right TLE in 12 out of 15 patients. Chapter 3 explores machine learning models to detect TLE, obtaining perfect classification for left patients, and 88.9% accuracy for right TLE patients. Chapter 4 focuses on temporal lobe asymmetry developing a voxel-based method for assessing asymmetry and verifying its applicability to individual predictions (92% accuracy) and group-wise statistical analyses. Informative ROI and voxel-based informative features are described for each experiment, demonstrating the relative importance of mean diffusivity over other MR imaging alternatives in identification and lateralization of TLE patients. Finally, the conclusion chapter discuss contributions, main limitations and outlining options for future research
    corecore