20,128 research outputs found

    A model checking approach to the parameter estimation of biochemical pathways

    Get PDF
    Model checking has historically been an important tool to verify models of a wide variety of systems. Typically a model has to exhibit certain properties to be classed ‘acceptable’. In this work we use model checking in a new setting; parameter estimation. We characterise the desired behaviour of a model in a temporal logic property and alter the model to make it conform to the property (determined through model checking). We have implemented a computational system called MC2(GA) which pairs a model checker with a genetic algorithm. To drive parameter estimation, the fitness of set of parameters in a model is the inverse of the distance between its actual behaviour and the desired behaviour. The model checker used is the simulation-based Monte Carlo Model Checker for Probabilistic Linear-time Temporal Logic with numerical constraints, MC2(PLTLc). Numerical constraints as well as the overall probability of the behaviour expressed in temporal logic are used to minimise the behavioural distance. We define the theory underlying our parameter estimation approach in both the stochastic and continuous worlds. We apply our approach to biochemical systems and present an illustrative example where we estimate the kinetic rate constants in a continuous model of a signalling pathway

    Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    Get PDF
    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.National Institutes of Health (U.S.) (NIH grant P50-GM68762)National Institutes of Health (U.S.) (Grant U54-CA112967)United States. Dept. of Defense (Institute for Collaborative Biotechnologies

    A Study of the PDGF Signaling Pathway with PRISM

    Get PDF
    In this paper, we apply the probabilistic model checker PRISM to the analysis of a biological system -- the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. We show that quantitative verification can yield a better understanding of the PDGF signaling pathway.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Therapeutic target discovery using Boolean network attractors: avoiding pathological phenotypes

    Get PDF
    Target identification, one of the steps of drug discovery, aims at identifying biomolecules whose function should be therapeutically altered in order to cure the considered pathology. This work proposes an algorithm for in silico target identification using Boolean network attractors. It assumes that attractors of dynamical systems, such as Boolean networks, correspond to phenotypes produced by the modeled biological system. Under this assumption, and given a Boolean network modeling a pathophysiology, the algorithm identifies target combinations able to remove attractors associated with pathological phenotypes. It is tested on a Boolean model of the mammalian cell cycle bearing a constitutive inactivation of the retinoblastoma protein, as seen in cancers, and its applications are illustrated on a Boolean model of Fanconi anemia. The results show that the algorithm returns target combinations able to remove attractors associated with pathological phenotypes and then succeeds in performing the proposed in silico target identification. However, as with any in silico evidence, there is a bridge to cross between theory and practice, thus requiring it to be used in combination with wet lab experiments. Nevertheless, it is expected that the algorithm is of interest for target identification, notably by exploiting the inexpensiveness and predictive power of computational approaches to optimize the efficiency of costly wet lab experiments.Comment: Since the publication of this article and among the possible improvements mentioned in the Conclusion, two improvements have been done: extending the algorithm for multivalued logic and considering the basins of attraction of the pathological attractors for selecting the therapeutic bullet

    Analysis of signalling pathways using the prism model checker

    Get PDF
    We describe a new modelling and analysis approach for signal transduction networks in the presence of incomplete data. We illustrate the approach with an example, the RKIP inhibited ERK pathway [1]. Our models are based on high level descriptions of continuous time Markov chains: reactions are modelled as synchronous processes and concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis of queries such as if a concentration reaches a certain level, will it remain at that level thereafter? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Stronger computational modelling of signalling pathways using both continuous and discrete-state methods

    Get PDF
    Starting from a biochemical signalling pathway model expresses in a process algebra enriched with quantitative information, we automatically derive both continuous-space and discrete-space representations suitable for numerical evaluation. We compare results obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Analysis of signalling pathways using continuous time Markov chains

    Get PDF
    We describe a quantitative modelling and analysis approach for signal transduction networks. We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK+03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous processes and reactions by transitions. Concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis such as what is the probability that if a concentration reaches a certain level, it will remain at that level thereafter? or how does varying a given reaction rate affect that probability? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable
    corecore