2,380 research outputs found

    Blockchain: A Graph Primer

    Full text link
    Bitcoin and its underlying technology Blockchain have become popular in recent years. Designed to facilitate a secure distributed platform without central authorities, Blockchain is heralded as a paradigm that will be as powerful as Big Data, Cloud Computing and Machine learning. Blockchain incorporates novel ideas from various fields such as public key encryption and distributed systems. As such, a reader often comes across resources that explain the Blockchain technology from a certain perspective only, leaving the reader with more questions than before. We will offer a holistic view on Blockchain. Starting with a brief history, we will give the building blocks of Blockchain, and explain their interactions. As graph mining has become a major part its analysis, we will elaborate on graph theoretical aspects of the Blockchain technology. We also devote a section to the future of Blockchain and explain how extensions like Smart Contracts and De-centralized Autonomous Organizations will function. Without assuming any reader expertise, our aim is to provide a concise but complete description of the Blockchain technology.Comment: 16 pages, 8 figure

    Network-based indicators of Bitcoin bubbles

    Get PDF
    The functioning of the cryptocurrency Bitcoin relies on the open availability of the entire history of its transactions. This makes it a particularly interesting socio-economic system to analyse from the point of view of network science. Here we analyse the evolution of the network of Bitcoin transactions between users. We achieve this by using the complete transaction history from December 5th 2011 to December 23rd 2013. This period includes three bubbles experienced by the Bitcoin price. In particular, we focus on the global and local structural properties of the user network and their variation in relation to the different period of price surge and decline. By analysing the temporal variation of the heterogeneity of the connectivity patterns we gain insights on the different mechanisms that take place during bubbles, and find that hubs (i.e., the most connected nodes) had a fundamental role in triggering the burst of the second bubble. Finally, we examine the local topological structures of interactions between users, we discover that the relative frequency of triadic interactions experiences a strong change before, during and after a bubble, and suggest that the importance of the hubs grows during the bubble. These results provide further evidence that the behaviour of the hubs during bubbles significantly increases the systemic risk of the Bitcoin network, and discuss the implications on public policy interventions

    A Bayesian Approach to Identify Bitcoin Users

    Get PDF
    Bitcoin is a digital currency and electronic payment system operating over a peer-to-peer network on the Internet. One of its most important properties is the high level of anonymity it provides for its users. The users are identified by their Bitcoin addresses, which are random strings in the public records of transactions, the blockchain. When a user initiates a Bitcoin-transaction, his Bitcoin client program relays messages to other clients through the Bitcoin network. Monitoring the propagation of these messages and analyzing them carefully reveal hidden relations. In this paper, we develop a mathematical model using a probabilistic approach to link Bitcoin addresses and transactions to the originator IP address. To utilize our model, we carried out experiments by installing more than a hundred modified Bitcoin clients distributed in the network to observe as many messages as possible. During a two month observation period we were able to identify several thousand Bitcoin clients and bind their transactions to geographical locations
    corecore