2 research outputs found

    Quantitative Characterization of Complex Systems—An Information Theoretic Approach

    Get PDF
    A significant increase in System-of-Systems (SoS) is currently observed in the social and technical domains. As a result of the increasing number of constituent system components, Systems of Systems are becoming larger and more complex. Recent research efforts have highlighted the importance of identifying innovative statistical and theoretical approaches for analyzing complex systems to better understand how they work. This paper portrays the use of an agnostic twostage examination structure for complex systems aimed towards developing an information theorybased approach to analyze complex technical and socio-technical systems. Towards the goal of characterizing system complexity with information entropy, work was carried out in exploring the potential application of entropy to a simulated case study to illustrate its applicability and to establish the use of information theory within the broad horizon of complex systems. Although previous efforts have been made to use entropy for understanding complexity, this paper provides a basic foundation for identifying a framework to characterize complexity, in order to analyze and assess complex systems in different operational domains

    A Novel Graph-Based Modelling Approach for Reducing Complexity in Model-Based Systems Engineering Environment

    Get PDF
    Field of systems engineering (SE) is developing rapidly and becoming more complex, where multiple issues arise such as overcomplexity, lack of communication or understanding of the design process on different stages of its lifecycle. Model-based systems engineering (MBSE) has been introduced to overcome the communication issues and reduce systems complexity. A novel approach for modelling interactions is proposed to enhance the existing MBSE methodologies and further address the identified challenges. The approach is based on graph theory, where pre-defined rules and relationships are substituted and reorganised dynamically with graphical constructs. A framework for reducing complexity and improving logic modelling in MBSE with metagraph object-oriented approach is presented. This framework is tested in use cases from literature, where the model-based systems approach is applied to design an automobile system to match the acceleration requirements, and to improve a CubeSat nanosatellite communication subsystem. Through the use case scenarios, it has been proven that the methodology framework meets all the identified functional and design requirements and achieves the aim of the research. This work may be viewed as a step forward towards more consistent and automatic modelling of interactions among subsystems and components in MBSE. Automation techniques have multiple applications in systems engineering field as engineers always aim to produce higher quality and cost-effective products in less time and that is achieved by integrating knowledge on every stage of a development lifecycle. In addition to those advantages for SE field, the research provides basis for potential research proposals for future work in various engineering fields such as knowledge based engineering or virtual engineering
    corecore