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Abstract: A significant increase in System-of-Systems (SoS) is currently observed in the social and
technical domains. As a result of the increasing number of constituent system components, Systems
of Systems are becoming larger and more complex. Recent research efforts have highlighted the
importance of identifying innovative statistical and theoretical approaches for analyzing complex
systems to better understand how they work. This paper portrays the use of an agnostic two-
stage examination structure for complex systems aimed towards developing an information theory-
based approach to analyze complex technical and socio-technical systems. Towards the goal of
characterizing system complexity with information entropy, work was carried out in exploring the
potential application of entropy to a simulated case study to illustrate its applicability and to establish
the use of information theory within the broad horizon of complex systems. Although previous
efforts have been made to use entropy for understanding complexity, this paper provides a basic
foundation for identifying a framework to characterize complexity, in order to analyze and assess
complex systems in different operational domains.

Keywords: complex systems; structural complexity; information theory; entropy; transfer entropy;
complex networks; complexity; system of systems

1. Introduction

Complex systems are referred to as systems that are composed of many indepen-
dent system elements playing a key role in the whole system’s behavior. Although the
independent system elements follow their own logic and behavior, and interact among
themselves, such elements define the dynamic behavior observed in a collectively complex
system. Based on the principles of complexity science, the complexity of any system can be
characterized by understanding the relations, interactions, and behavior of the constituent
system elements. Systems can be formalized by two distinctions, disorganized complexity,
and organized complexity [1]. Disorganized complexity is a result of many constituent
independent system elements. In such a case, the system elements interact among several
others, contributing to random system behavior. To understand such a system, statistical
and probabilistic methods are usually used. By comparison, organized complexity com-
prises non-random behavior of the system elements where the number of parts need not
be large for the system to be knowledge emergent. Properties of such a system can be
understood with the help of simulations and various modeling techniques. It is to be noted
that the whole idea of a complex system is still uncertain, based on the fact that it differs
in terms of its definition, understanding, and concept between authors according to their
perspectives [2]. To provide a few frequently contested definitions [3] of complex systems
over the years:

“Complex systems are those with many strongly interdependent variables. This excludes
systems with only a few effective variables, the kind we meet in elementary dynamics. It
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also excludes systems with many independent variables; we learn how to deal with them
in elementary statistical mechanics. Complexity appears where coupling is important but
doesn’t freeze out most degrees of freedom” [4].

“Complex system can be defined as a system with large number of components, often
called agents or constituent system elements, that interact, adapt and learn” [5].

“Complex systems exhibit several defining characteristics, including feedback, strongly
interdependent variables, extreme sensitivity to initial conditions, fractal geometry, and
self-organized criticality, multiple metastable states, and a non-gaussian distribution of
outputs” [6].

“Systems that tend to be robust and at the same time capable of producing large events.
They can attain equilibria, both fixed pints and simple patterns, as well as produce long
random sequence” [7].

“Complex Systems are composed out of interdependent parts and violate the ergodic
theorem. They have many degrees of freedom whose time dependence is very slow on a
microscopic scale” [8].

The varying perspectives on complex systems are spearheading the development of
several metrics in the literature to measure systems complexity. These include identifying
system complexity based on requirements difficulty, stakeholder relationships, and several
similar other measures. However, these measures are not exhaustive, considering the
difficulty in accurately measuring systems complexity [3]. As an attempt to contribute to
the scientific body of knowledge that addresses understanding systems complexity, this
paper illustrates a framework to characterize complex systems based on the concept of
Information Entropy, using a two-stage examination method.

The novelty of the proposed approach lies in establishing a translatable framework
across complex system domains to use information entropy. This includes incorporating
a well-established and validated statistical foundation that shall be able to assess the
relationships between sub-systems/components of a complex system, provide information
to understand a system, assess and identify the interaction patterns of components/sub-
systems in a system, and be able to differentiate between the input and output information
of a system. Further, the approach illustrated enables the identification of driving and
reacting components/sub-systems of a complex system.

A parallel can be drawn between information entropy and system complexity, where,
as a system evolves or changes its state, the entropy will also change. This helps to identify
entropy in a complex system as a function of the systems components, and their interactions.
Supporting this relationship is the theorization that entropy is a special case applicable to
system of systems based on combination of change in information and system disorder,
where the increase in information leads to an increase in disorder, also known as entropy [9].
Further, information in a system can be contemplated as an enabler for sub-systems to
interact among themselves [9]. System components (in this case, sub-systems of a complex
system) and their interactions take information as an anchor that drives a change in a
system, thus supporting the statement “Entropy in a complex system is a function of the
system components and their interactions”.

To test the applicability of the parallel drawn to information entropy, in this paper a
research question is formulated:

Q1. Can information entropy help in quantitatively characterizing a complex system?
To address this question, first a two-stage examination method is identified to intro-

duce a structured thought regarding the application of information theory to different
systems. Then, a simulation-based case study is introduced with tailored information
entropy-based metrics developed to aid in portraying the application of information
entropy in complex networks, systems with low structural rigidity (i.e., unpredictable
sub-system interactions), and high information gain.

The reminder of this paper is structured as follows. Section 2 expands on the agnostic
two-stage examination framework used. Section 3 provides a background on the concept
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of entropy and its interpretations, along with the foundation of entropy from information
theory justifying the approach adopted in answering the research question. Section 4
provides an overview and definition of complex networks, followed by the case study
illustrating entropy-based metric development and its application to complex networks in
Section 5. Finally, the discussion and conclusions on the applicability of information theory
to understand and characterize complex systems are identified in Section 6.

2. Agnostic Two-Stage Examination Structure for Complex Systems

The two-stage system examination strategy used is illustrated in Figure 1. First, the
concepts of entropy were explored in terms of thermodynamic sense, statistical sense,
disorder sense, information sense, and homogeneity sense. Second, domain-specific
methodologies of complexity in complex systems, for the considered case study, were
studied. This involves understanding what complexity is, and later identifying intra- and
inter-system dependencies.

Figure 1. Agnostic two-stage complex systems examination structure.

With a thorough understanding of system characteristics, exploring the benefits and
drawbacks of the entropy-based complexity measures helped confirm the need for ex-
ploiting various characteristics of a system to establish new techniques to measure and
understand the system. This followed engineering entropy-based metrics specific to the
case study aimed at providing a proxy that reflects an analogy of what complexity is. To
expand, an overview of entropy is first provided, and a foundation for the case study on
complex networks, i.e., systems with low structural rigidity (unpredictable sub-system
interactions) and high information gain is then built.

3. Understanding Entropy—An Overview

The concept of entropy is often thought of as abstract and, at the same time, difficult
to present because of its different applications by various authors in many research fields.
Throughout the literature, it is observed that many authors mostly seem to consider entropy
to be either a state of disorder or a loss of information. To better understand the distinct
sense of the term entropy, a principled polysemy approach [10] adapted from the field of
linguistics will help the readers to understand the basic co-existence of many meanings of
the word entropy. Five distinct meanings of the word entropy were identified by Haglund
et al. [10], viz., thermodynamic sense, statistical sense, disorder sense, information sense,
and homogeneity sense. In the thermodynamic sense, entropy can be interpreted as a
state of a system that tends to increase towards a maximum value. The statistical sense of
entropy presumes a probabilistic approach of identifying, counting, and monitoring the
transitions between the microstates of the system. In contrast to the statistical sense, the
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disorder sense does not use a probabilistic approach but rather considers the snapshot of a
given situation by representing spatial configurations and messiness.

Entropy in terms of information theory can be seen as the average rate of information
added by the next element, calculated by considering the complete set of symbols and
their probabilities. The information sense of entropy, according to Haglund et al., relates
to the information needed to produce or interpret a message using its elements, such as
digits, symbols, letters, and words. This entropy model shares the relationship between
a message and its constituent elements. To better understand the information sense of
entropy, refer to the following text extracted from Shannon’s work on mathematical theory
of communication [10]:

“If a source can produce only one particular message its entropy is zero, and no channel
is required. For example, a computing machine set up to calculate the successive digits of
π produces a definite sequence with no chance element” [11,12].

Contrary to the statistical sense, where characteristics are shared by microstates,
entropy in the information sense can be used to predict the next or an upcoming message or
a symbol in a message based on conditional probabilities, thereby stressing the probabilistic
prediction of the next symbol of a message. The main difference emphasized here is
the characteristic of entropy according to the statistical sense based upon a system’s
description through its constituent elements’ relationships. The information sense and the
disorder sense share this property, whereas the thermodynamic sense does not. Entropy in
thermodynamics represents the inherent disorder in a system over a period of time as the
system heads towards thermodynamic equilibrium.

In information theory, entropy helps to quantify the information [11]. Quantifying
information implies analyzing the information present and measuring its associated un-
certainty. Higher values of entropy signify lesser order in a system and lower values of
entropy signify a more ordered system. Shannon entropy H is given as:

H = −K ∑ Pi log2 Pi (1)

where K = 1, Pi is the probability of a symbol appearing in a given stream of symbols, and
the use of the logarithm base two corresponds to expressing information entropy in terms
of bits.

This paper takes its foundation for entropy from information theory, as given by
Shannon. Information theory plays an important role in understanding the meaning
of entropy. This is because it is preferable to consider information that can be defined
both quantitatively and subjectively. Moreover, information can be used as an anchor to
understand what is changing in a spontaneous process. It is to be noted that information
theory helps to precisely establish a measure of information defined in terms of probabilities
based on some given evidence [13].

Several attempts in the literature are observed on the use of entropy as a tool in
understanding uncertainty in domain specific complex systems. To name a few, examples
include: in the biological domain, the use of entropy for predicting diverse states of kidney
failure disease considering the effects of hypertension and stress [14], and assessing causal
relationships between pairs in gene regulatory networks [15]; in image segmentation,
a generalized application of entropy in continuous and discrete variables [16]; analysis
of financial markets by analyzing the relationship between nine different stock indices
from U.S, Europe, and China using entropy measures [17]; detecting fatigue cracks in
aluminum alloys [18]; fabric defect detection [19]; and, more interestingly, the quantification
of information in cosmological probes of large scale structures [20]. A lack of a unifying
approach for characterizing complex systems across domains justifies the framework used
to characterize complex systems based on the concept of information entropy, underlying
the assumption that entropy of a complex system is a function of its components and
their interactions.
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4. Complex Networks—An Overview and Definition

A network, as derived from graph theory, is a simplest form representing a collection
of points that are joined together in pairs by lines. In every such representation, the set
of points are referred to as nodes or vertices, and the lines used to connect the points
together are referred as edges. Networks can be mapped from contexts across several
domains, such as physical sciences, biological sciences, and social sciences, that consist
of several components linked together. It is observed in the literature that physical, bio-
logical, and social systems, when mapped as networks, often provide new insights into
the behavior and structure of the system in question [21]. The question of when a consid-
ered network is said to be complex can be addressed using the principles of complexity
science. Several contrasting views [22–26] on complex and complicated systems have been
defined throughout the literature from the lens of complexity science. Drawing upon
the views of various researchers on characteristics of complicated and complex systems
and, looking back into networks topologies and their characteristics [21], in this study a
complex network is defined as a network mapped from a system that primarily constitutes
interactions observed among systems components, interactions of human actors in the
system, and the influence of human interaction on system components. Continual human
interactions in such networks play a primary role in influencing the network structure
and its evolution. The inherent ambiguity of human interactions and their individual
perceptions introduce non-linear behavior, emergence, and self-organization in networks,
thereby introducing complexity. Table 1 illustrates the distinguishing characteristics of
complicated and complex networks.

Table 1. Characteristics of complicated and complex networks.

Category Complicated Networks Complex Networks

Nodes Structured and predefined set of
connections Entity of random node connections

Characteristic Highly tuned Minimally tuned

Topology Highly organized structure Continually emergent structure based on
dynamics of interactions

Robustness Robust to targeted perturbations Robust to random perturbations

Relationships Easier to understand network
relationships

Difficult to understand network
relationships

Human influence Human interactions based on a
predefined set of rules Random human interactions

Network Examples Software system, automotive system,
electronic circuit networks

Transportation, social, communication
and biological networks

Figure 2 summarizes an abstract fundamental representation of how we define a
complex network. Complexity in a network is illustrated as result of the continual rela-
tionship between an actor (human) and the components (sub-systems) of a system; that
is, complexity in a network depends upon the extent of interactions a human actor has in
a system and the cascading influence human interactions initiate throughout that lead to
network emergence.
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Figure 2. Abstract fundamental representation of a complex network.

To some extent, complex networks can be characterized by the interactions among its
constituent nodes. These interactions evolving together result in the dynamic nature of the
network. Many complex networks have a number of properties that are common in nature,
leaving aside their domain specific characteristics. Displaying small world phenomena
is one such characteristic, and the other is the highly heterogeneous nature of interaction
patterns in many cases [27]. Heterogeneity in complex networks can be characterized by
observing the degree distribution based on the node interaction dynamics. Many observed
networks are reported to be scale-free networks, in which the degree distributions are
observed to follow a power law. Examples of such networks are electronic circuits, cellular
metabolism networks, research collaboration networks, and connectivity in the World
Wide Web [28].

5. Case Study—Entropy Metric Formulation and Analysis of Simulated
Complex Networks
5.1. Entropy to Understand Interaction Dynamics

To understand the dynamic structure of a given complex network as a whole, it is
important to analyze and explore the main conceptual underpinnings of a network, which
are the nodes and their interactions. Because complex networks are continually emergent
and non-linear in nature, exploring the dynamics of constituent nodes and their interaction
patterns helps in providing insight about how a network structure evolves. Considering the
degree distribution of every individual node in a network, let Pki

be the dynamic degree of
a node where it gives the probability of a particular node having k links at a given time-step
i. An entropy measure for a static network is first defined, which then is expanded to
consider the dynamic nature of complex networks.

Suppose there are n nodes in a network space N, N = (N1, N2, . . . .., Nn). Now let K
be a class of N where it defines the number of links of each observed node n of a network.
K = (K1, K2, . . . .., Kn). Let I be the proportion of interactions that are represented by the
number of links associated with each node n:

In =
Kn

(K1 + K2 + . . . + Kn)
=

Kn

∑n
i=1 Ki

(2)

Entropy is mathematically represented as:

H(X) = −
m

∑
i=1

p(x) log2 p(x) (3)

where 0 < H(X) < log2 m and 0 < H(X) < log2 H(X). It is to be noted that the value of
P log P = 0 when P = 0.
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Applying this measure to the number of nodes constituent in the network space
we obtain:

H(X) = −
n

∑
i=1

In log2 In (4)

Now, considering the dynamic nature of a complex network, let j be the number of
time-steps over which a network is observed. At every time-step j, each and every node n
of the network will have a degree k. Now, considering the degree of nodes at individual
time-steps of a network, entropy is given by:

H(X) =
j

∑
t=1

(−
n

∑
i=1

Int log2 Int) (5)

Here, a complex network is quantified to be a function of the number of nodes present
(Nn) and the number of links (In) associated with the nodes. The uncertainty based on the
distribution of the node degrees over a time period is used as a base indicator to calculate
network entropy. This also takes into consideration the diversity in network interactions.
When calculated, this index represents absolute order in the network when it takes a value
of 0, and represents disorder and absolute diversity when it takes a maximum value (the
maximum value depends upon the type of complex network being considered).

5.2. Transfer Entropy to Understand the Transfer of Information in Network over Time

The use of entropy in the field of networks is a well-studied area. Entropy has been
identified as a possible metric for playing a crucial role in analyzing the complexity of
a network [29]. To further extend entropy towards measuring uncertainty between two
random variables X and Y, a measure of mutual information is used. Mutual information
is based only on the present state/symbol of each variable; considering all such present
states, mutual information, I (X, Y), is defined by:

I(X, Y) = ∑
x∈X

∑
y∈Y

P(x, y) log
P(x, y)

P(x) × P(y)
(6)

However, the fact that the measure of mutual information is symmetrical, i.e.,
I(X, Y) = I(Y, X), implies that the future state of a random variable has a casual effect
on the past state. In the case of complex networks, where a network consisting of several
nodes evolves over a period of time, the structure of a network at a time t depends upon
the evolution of the network until time t−1, not the other way around. Thus, in order
to address the symmetrical limitation of the mutual information measure, the concept of
transfer entropy was proposed [30].

Transfer entropy (TE) was coined [31] to address the time symmetric limitation of a
mutual information measure. Considering two sample spaces of information represented
in time by X = {x1, x2, x3, . . . .., xt} and Y = {y1, y2, y3, . . . .., yt}, transfer entropy is defined
as the additional amount of information gained for the next observation of one of the two
processes being considered, given the past observation of the other process.

Following Murcio et al. [30], considering two systems X and Y, we first define the
entropy rate (i.e., entropy based on time t) assuming that yt+1 depends upon both xt and
yt as:

HA = −∑
t

p(yt+1, yt, xt) log p(yt+1/yt, xt) (7)

We now define the entropy rate in which yt+1 depends only on yt:

HB = −∑
t

p(yt+1, yt, xt) log p(yt+1/yt) (8)

Hence, the transfer of information from X to Y is defined as TE (X, Y) i.e., transfer of
information from X to Y: TE (X, Y) = HB − HA.
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TE, the transfer of information between two random variables X and Y, is given
by [30,31]:

TE (X, Y) = ∑
t=1

p(yt+1, yt, xt) log
p(yt+1, yt, xt) × p(yt)

p(yt, xt) × p(yt+1, yt)
(9)

Moreover, the transfer entropy from Y to X can be inferred similarly based on the
above as:

TE (Y, X) = ∑
t=1

p(xt+1, xt, yt) log
p(xt+1, xt, yt) × p(xt)

p(xt, yt) × p(xt+1, xt)
(10)

To analyze the flow of information generated from one node to the other of a con-
sidered network based on the observed individual node degree evolution over several
time-steps of network formation, the concept of transfer entropy is used. When applied to
a network evolution scenario, TE helps in understanding how much of the information
generated at one node is responsible for the information obtained by the other node.

5.3. Simulation Models Used to Apply the Metrics

To calculate entropy and TE values based on individual node degree evolution, data
was generated using the NetLogo agent-based simulation platform. The advances ob-
served in the use of agent-based modeling (ABM) to represent social systems compared to
traditional equation-based models, and their ability to mimic heterogenous subsystems,
autonomous entities, and nonlinear relationships, affirmed the use of ABM [32]. Tracing
back to the principles of complexity science, a system is a sum of its parts as a whole but not
the other way around. Two random networks i.e., preferential attachment and small world
networks, were generated. Data was captured individually for each network based on the
number of nodes present along with the individual node degrees (number of connections)
over several time-steps. ABM helps to model and represent individual components of a
system considering all the possible attributes and their behavior instead of representing
the state of a whole system. ABM models were used to generate network models where
individual agents (in this case network nodes) are describes as individual entities that in-
teract with each other locally in their environment [33]. The characteristics of the networks
generated, and the calculations of transfer entropy values, are discussed below. The focus is
to model network dynamics of the system that arises when individual nodes interact with
each other, and on how such individual nodes affect the overall network. This simulates a
few characteristics of complex systems and their independent sub-systems, such as degrees
of freedom, emergence, and adaptability.

5.3.1. Preferential Attachment Networks

Generated networks using the NetLogo software (version 5.3.1) illustrate the behavior
of real-world networks (such as connection from and to a website, social networks, and
collaboration networks), where few nodes have a large number of connections, whereas
all the other nodes have only a few. This phenomenon in which network nodes prefer to
connect to the popular existing nodes is called preferential attachment. This model starts
with two nodes connected initially, and thereby every new originating node randomly picks
an existing node with which to connect, with some inherent bias, i.e., the chance of a node
being chosen to be connected to by another node is directly proportional to the number
of connections (degree) it already has. The networks that arise from this phenomenon
often follow a power law distribution, i.e., the distribution of the number of connections of
each node is not normal [34]. Barabasi and Albert originally coined this mechanism for
creating scale-free networks, so the networks created by this mechanism are called Barabasi
scale-free networks. Figure 3 illustrates the evolution of interactions in the network over
fifteen different snapshots.
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Figure 3. Emergence of network based on preferential attachment phenomenon.

To analyze the flow of information generated from one node to another of the net-
work based on the individual node degree evolution over several time-steps of network
formation, the concept of transfer entropy (TE) is used. To generate TE values based on
individual node degree evolution, data on the number of nodes present along with the
individual node degrees over 15 different time-steps were captured using NetLogo [35].
Table 2 illustrates the degree evolution of nodes portrayed in Figure 3.

Table 2. Time series showing the node degrees generated at each time-step.

Time-Steps
Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 3 4 4 4 4 4 5 6 6 6 6 7 7
2 0 1 1 1 2 2 2 2 2 1 1 1 2 2 2
3 0 0 1 1 1 1 1 1 1 2 1 1 1 1 1
4 0 0 0 1 1 2 2 2 2 1 3 1 1 1 1
5 0 0 0 0 1 1 1 1 1 2 1 3 1 1 1
6 0 0 0 0 0 1 2 3 3 1 2 1 3 1 1
7 0 0 0 0 0 0 1 1 1 3 1 3 1 3 1
8 0 0 0 0 0 0 0 1 1 1 3 1 3 1 3
9 0 0 0 0 0 0 0 0 1 1 1 3 1 3 1
10 0 0 0 0 0 0 0 0 0 1 1 1 3 1 4
11 0 0 0 0 0 0 0 0 0 0 1 1 1 3 1
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

To calculate the TE values (see Table 3), joint probabilities are calculated for the
emerging node degrees of Table 2. Thus, to calculate the TE from node 0 to node 1 at time-
step t1, we need to find the probability p (y2, y1, x1) as required for calculating TE, where y2
corresponds to the value located in the second column, second row; y1 corresponds to the
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value in the first column, second row; and x1 corresponds to the value in the first column,
first row; i.e., p (1,1,1). We now count the number of matching combinations of these values
that exist in the two rows corresponding to node 0 and node 1. In the graph (Figure 4), the
X-axis represents the node numbers and the Y-axis represents the corresponding TE values.
It is read as: for the red line, Mark 0 is the TE value from node 0 to node 1, Mark 1 is the TE
value from node 1 to node 2, and so on. For the blue line, mark 0 is the TE value from node
1 to node 0, mark 1 is the TE value from node 2 to node 1, and so on.

Table 3. TE values calculated based on node degrees from Table 2.

Source Node Destination Node Transfer Entropy (S-D) Transfer Entropy (D-S)

0 1 0.000 0.117
1 2 0.155 0.077
2 3 0.058 0.032
3 4 0.143 0.035
4 5 0.185 0.104
5 6 0.166 0.084
6 7 0.114 0.054
7 8 0.193 0.064
8 9 0.182 0.061
9 10 0.183 0.070

10 11 0.186 0.086
11 12 0.163 0.043
12 13 0.131 0.016
13 14 0.109 0.003
14 15 0.111 0.021

Figure 4. Transfer entropy values between the nodes of the preferential attachment network.

It is seen that, in general (see Figure 4), information flow from the source nodes to
the destination nodes initially rises and then dominates information flow from destination
nodes to source nodes. At the early stages of the graph, the trend line of S-D, when
observed, shows that TE between node 0 and 1 is zero with node 0 as the source and node
1 as the destination.

This simply suggests to the initial network structural formation where at the initial
time-step nodes 0 and 1 are connected, on which the simulated network builds over the
considered time series. Before calculating the network entropy measure, we introduce
a measure of connectedness, also called the reproductive number in complex networks.
The reproductive number, R0, helps to understand the context of information spread in
a network [36]. R0, also known as the connectedness of a network, can be calculated
as follows.

Consider a node n with degree k to communicate an idea or spread information to its
neighbors with a probability r. The expected number of nodes it will pass the information
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to will be r× (k− 1), by excluding the nodes it previously communicated the information
to. Taking a weighted average over all the nodes we obtain:

R0 = r× ∑n
i=1 Ki(Ki − 1)

∑n
i=1 Ki

(11)

If the value of R0 is greater than 1, it implies that the number of nodes receiving the
information grows exponentially; if R0 is less than 1 it implies that the information will
dissipate rapidly over a network.

Table 4 and Figure 5 portray that, as the network evolves, entropy increases, implying
that in a preferential attachment network with more nodes evolving over a period of time,
the network as a whole tries to reach a disordered/more diverse state from an ordered
state initially. As entropy (diversity) increases, the reproduction number initially increases
and then decreases. This implies that when the network starts to evolve, there is a greater
chance of information spread, and when the network starts evolving to more than four
nodes at time-step 3, the information spread slowly decreases.

Table 4. Temporal evolution of entropy and R0 values for the generated preferential attachment
network model.

Time-Step Entropy R0

0 1.00 0.00
1 1.50 0.083
2 1.79 0.083
3 2.00 0.075
4 2.32 0.046
5 2.58 0.031
6 2.80 0.022
7 2.95 0.019
8 3.038 0.018
9 3.10 0.018
10 3.23 0.015
11 3.34 0.012
12 3.47 0.010
13 3.52 0.010
14 3.60 0.009

Figure 5. Temporal evolution of entropy (left) and R0 measures (right) of the generated preferential
attachment network.

5.3.2. Small World Networks

The network generated here using NetLogo simulation software is based on the
phenomenon of small word networks. This phenomenon implies that a given person is
only a small number of (a few) connections away from any other person in the world. A
popular example of this phenomenon is the famous Kevin Bacon network (also known as
a six-degree separation network), which relates to a network generated based on actors
appearing in the same movie. However, small world networks are not only limited to
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networks of people, but also apply to several other real-time networks such as power grids.
The network model generated here is based on a few assumptions and conditions under
which a small world network is formed. It is developed based on the model suggested by
Duncan Watts and Steve Strogatz [37]. The model starts by initially generating a network
in which each node is connected to its two neighbors on either of its sides [35].

After this initial random network is generated, at each and every time-step, a random
connection is picked and then rewired i.e., a random end of a connected pair of nodes
is changed. The probability that a random edge is chosen and rewired is based on the
rewiring probability value assigned to the network generation model. Figure 6 illustrates
the evolution of interactions in the network over fifteen different snapshots. Tables 5 and 6
illustrate the node degree evolution observed for the generated small world network and
their respective transfer entropy values.

Figure 6. Small world network emergence generated.

Table 5. Time series showing the node degrees generated at each time-step of a small world network.

Time-Steps
Nodes 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5
2 4 4 4 4 5 5 5 6 6 6 6 6 6 6 6
3 4 4 4 4 4 4 3 3 3 3 3 3 3 3 2
4 4 3 3 3 3 3 3 4 4 4 4 4 4 4 4
5 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3
6 4 5 5 5 5 5 5 5 6 5 5 5 5 5 5
7 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5
8 4 4 4 4 3 3 3 3 3 3 3 3 3 4 4
9 4 4 3 3 3 4 4 4 4 4 3 3 3 3 3
10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
11 4 5 4 3 3 3 3 2 2 2 2 3 4 4 4
12 4 3 4 4 4 4 4 3 3 3 3 2 2 2 2
13 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
14 4 4 5 5 5 4 4 4 3 4 5 5 5 4 4
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Table 6. TE values calculated based on node degrees from Table 5.

Source Node Destination Node Transfer Entropy (S-D) Transfer Entropy (D-S)

0 1 0.000 0.0002
1 2 0.069 0.0006
2 3 0.045 0.0882
3 4 0.206 0.0106
4 5 0.022 0.0137
5 6 0.010 0.0059
6 7 0.006 0.0185
7 8 0.012 0.0077
8 9 0.021 0.0609
9 10 0.000 0.0000
10 11 0.000 0.0022
11 12 0.084 0.1661
12 13 0.052 0.0267
13 14 0.028 0.0226

As observed in Figure 7, Node 0 has no information originating from it. This simply
reflects the rigidity of the node, which does not change the degree over the network
emergence (the node is connected to the same neighbors throughout), and thereby does
not generate any new information.

Figure 7. Transfer entropy values between the nodes of small world network.

Figure 8 and Table 7 illustrate the entropy measure and R0 calculated at every time-
step of the dynamic network. It is observed that, as the network evolves, entropy decreases,
implying that the small world network tries to reach an ordered state from a highly
disordered initial state. As entropy (diversity) reduces the reproduction rate R0 increases.
This implies that when this network tends to reach absolute order (i.e., less entropy) the
spread of information increases over the network.
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Figure 8. Dynamic entropy (left) and R0 measures (right) of the generated small world network.

Table 7. Temporal evolution of entropy and R0 values for the generated small world network model.

Time-Step Dynamic Entropy R0

0 3.906 0.014286
1 3.894 0.014603
2 3.894 0.014603
3 3.888 0.014762
4 3.882 0.014921
5 3.888 0.014762
6 3.882 0.014921
7 3.863 0.015397
8 3.852 0.015714
9 3.863 0.015397
10 3.857 0.015556
11 3.857 0.015556
12 3.857 0.015556
13 3.863 0.015397
14 3.849 0.015714

The framework of information theory used has no restrictions on the type of complex
system it is applied to because the interactions among the components/subsystems of
a complex system can be viewed as information transfer. Perceived applications of the
proposed framework across various operational domains can include addressing time criti-
cal system of systems (SoS), such as testing autonomous system adaptation platforms for
understanding and assessing the impact of adding additional system functionalities [38],
mission critical weapon SoS [39], assessing complexity in manufacturing systems [40],
identifying software code complexities [41], and assessing commercial off the shelf prod-
ucts [42]. However, the use of TE may lead to the curse of dimensionality [43] with an
exponential increase in the number of nodes and connections, thus limiting the scope
of the proposed method. This may be plausibly addressed using decomposed transfer
entropy [44], thus providing the opportunity for further investigation of the proposed
approach and its limitations.

6. Discussion and Conclusions

The simulated case study considered in this paper considers complex networks. To
examine the use the information theoretic approach, we mapped the similarity of a complex
network to a general communication channel. A typical communication channel consists of
a source that sends information, a channel that acts as a medium to transmit the information,
and a destination that receives the transmitted information. In terms of complex networks,
network nodes and actors behave as both source and destination, constantly transmitting
and receiving information, whereas the edges connecting the nodes of a complex network
act as the medium of information transfer. The application of the concepts from information
theory helped in understanding, at a system and sub-system level, the interdependencies
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among the considered system constituents. This provided system analysis insights which
led to the development of specific metrics for the tailored entropy-based case study.

Table 8 illustrates a summarized representation of how information theoretic concepts
and their applications were relevant in understanding the case study used. This paper
presenting the case study is framed according to the application of information theory
concepts with a goal to better understand and assess complex systems. We present the
insight drawn from the case study in answering the research question identified i.e., Can
information entropy help in quantitatively characterizing a complex system?

Table 8. Information theoretic concepts and their application towards complex systems.

Concepts and Measures from Information
Theory Complex System Characterization

Entropy

• Helps to understand the diversity of network node interactions
• Helps to understand the context of information spread in a network over its

evolution

Transfer Entropy

• Helps to identify the structural implication of nodes in a complex network on
their information processing ability

• Helps to identify the information processing ability of a network
• Helps to quantify how much information is needed to describe a network of

a given scale

Because not all complex systems have the same characteristics and behave in a similar
fashion, it is indeed not possible to provide a generalized metric to quantitatively char-
acterize a complex system. However, using information theory concepts tailored to the
specific system being considered helps to answer and quantify the complexity, based on a
set of assumptions. In such a case, a thorough understanding of the considered systems,
sub-systems, and their interactions is required. Using the concept of entropy, complex
systems can be mapped as a network of interactions, and the characteristics of the complex
system can be quantified, thereby setting a foundation for understanding a complex system.
The complexity can then be quantified based on a set of assumptions. For example, when
a complex system is mapped as a network, information entropy can be used to quantify
the network at a given snapshot based on the observed sub-systems’ interaction patterns.
Considering the network dynamics, at every instant the network emerges with either new
nodes introduced into the network or rewiring of the connections among the nodes of the
networks. Provided that the data on system interaction patterns at every instance of the
system evolution is available, entropy-based measures can detect the precise time instance
at which the system is exposed to external stimuli. This is because entropy can be seen as a
measure of surprise in which, following sudden external stimuli to the network, a rapid
change in the tailored entropy-based measure can be detected when observed over the
system dynamics

The insight drawn is strictly based on the observations from the case study presented
in this paper. Although the insights gained directly may not address complex system
characteristics of every possible scenario, they set a foundation for a fact-based theoretical
framework for explaining, understanding, and analyzing complex systems using informa-
tion theory concepts. A more realistic application of the proposed framework to time-series
evolution data of real-world complex systems would validate the use of entropy as a
generalized measure to characterize complex systems. However, this may also lead to a
need for identifying the influence of dimensionality, i.e., the role played by the increase in
nodes and connections in a complex system’s evolution, which needs to be further studied.
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