12,508 research outputs found

    Quantifying Triadic Closure in Multi-Edge Social Networks

    Full text link
    Multi-edge networks capture repeated interactions between individuals. In social networks, such edges often form closed triangles, or triads. Standard approaches to measure this triadic closure, however, fail for multi-edge networks, because they do not consider that triads can be formed by edges of different multiplicity. We propose a novel measure of triadic closure for multi-edge networks of social interactions based on a shared partner statistic. We demonstrate that our operalization is able to detect meaningful closure in synthetic and empirical multi-edge networks, where common approaches fail. This is a cornerstone in driving inferential network analyses from the analysis of binary networks towards the analyses of multi-edge and weighted networks, which offer a more realistic representation of social interactions and relations.Comment: 19 pages, 5 figures, 6 table

    Patterns of link reciprocity in directed networks

    Full text link
    We address the problem of link reciprocity, the non-random presence of two mutual links between pairs of vertices. We propose a new measure of reciprocity that allows the ordering of networks according to their actual degree of correlation between mutual links. We find that real networks are always either correlated or anticorrelated, and that networks of the same type (economic, social, cellular, financial, ecological, etc.) display similar values of the reciprocity. The observed patterns are not reproduced by current models. This leads us to introduce a more general framework where mutual links occur with a conditional connection probability. In some of the studied networks we discuss the form of the conditional connection probability and the size dependence of the reciprocity.Comment: Final version accepted for publication on Physical Review Letter

    Online Human-Bot Interactions: Detection, Estimation, and Characterization

    Full text link
    Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark the classification framework by using a publicly available dataset of Twitter bots. This training data is enriched by a manually annotated collection of active Twitter users that include both humans and bots of varying sophistication. Our models yield high accuracy and agreement with each other and can detect bots of different nature. Our estimates suggest that between 9% and 15% of active Twitter accounts are bots. Characterizing ties among accounts, we observe that simple bots tend to interact with bots that exhibit more human-like behaviors. Analysis of content flows reveals retweet and mention strategies adopted by bots to interact with different target groups. Using clustering analysis, we characterize several subclasses of accounts, including spammers, self promoters, and accounts that post content from connected applications.Comment: Accepted paper for ICWSM'17, 10 pages, 8 figures, 1 tabl

    Two types of well followed users in the followership networks of Twitter

    Get PDF
    In the Twitter blogosphere, the number of followers is probably the most basic and succinct quantity for measuring popularity of users. However, the number of followers can be manipulated in various ways; we can even buy follows. Therefore, alternative popularity measures for Twitter users on the basis of, for example, users' tweets and retweets, have been developed. In the present work, we take a purely network approach to this fundamental question. First, we find that two relatively distinct types of users possessing a large number of followers exist, in particular for Japanese, Russian, and Korean users among the seven language groups that we examined. A first type of user follows a small number of other users. A second type of user follows approximately the same number of other users as the number of follows that the user receives. Then, we compare local (i.e., egocentric) followership networks around the two types of users with many followers. We show that the second type, which is presumably uninfluential users despite its large number of followers, is characterized by high link reciprocity, a large number of friends (i.e., those whom a user follows) for the followers, followers' high link reciprocity, large clustering coefficient, large fraction of the second type of users among the followers, and a small PageRank. Our network-based results support that the number of followers used alone is a misleading measure of user's popularity. We propose that the number of friends, which is simple to measure, also helps us to assess the popularity of Twitter users.Comment: 4 Figures and 8 Table

    Understanding and Predicting Delay in Reciprocal Relations

    Full text link
    Reciprocity in directed networks points to user's willingness to return favors in building mutual interactions. High reciprocity has been widely observed in many directed social media networks such as following relations in Twitter and Tumblr. Therefore, reciprocal relations between users are often regarded as a basic mechanism to create stable social ties and play a crucial role in the formation and evolution of networks. Each reciprocity relation is formed by two parasocial links in a back-and-forth manner with a time delay. Hence, understanding the delay can help us gain better insights into the underlying mechanisms of network dynamics. Meanwhile, the accurate prediction of delay has practical implications in advancing a variety of real-world applications such as friend recommendation and marketing campaign. For example, by knowing when will users follow back, service providers can focus on the users with a potential long reciprocal delay for effective targeted marketing. This paper presents the initial investigation of the time delay in reciprocal relations. Our study is based on a large-scale directed network from Tumblr that consists of 62.8 million users and 3.1 billion user following relations with a timespan of multiple years (from 31 Oct 2007 to 24 Jul 2013). We reveal a number of interesting patterns about the delay that motivate the development of a principled learning model to predict the delay in reciprocal relations. Experimental results on the above mentioned dynamic networks corroborate the effectiveness of the proposed delay prediction model.Comment: 10 page

    Who students interact with? A social network analysis perspective on the use of Twitter in language learning

    Get PDF
    This paper reports student interaction patterns and self-reported results of using Twitter microblogging environment. The study employs longitudinal probabilistic social network analysis (SNA) to identify the patterns and trends of network dynamics. It is building on earlier works that explore associations of student achievement records with the observed network measures. It integrates gender as an additional variable and reports some relation with interaction patterns. Additionally, the paper reports the results of a questionnaire that enables further discussion on the communication patterns

    To reciprocate or not to reciprocate: Exploring temporal qualities in reciprocal exchanges in networks

    Get PDF
    In this article, we sought to draw theoretical explanations of reciprocal exchanges in networks and how reciprocity is seen as the building block of network sustainability through employing a temporal perspective. The article’s main contribution was to provide fresh insights into how temporality, drawn upon Bergson’s philosophy, advanced the way we look at reciprocity and consequently provided three perspectives of time, namely; emergent networks, discursive practices, and possible times. The practical implications of such perspectives inform organisation on how to select networks and predict their benefits. The research method included 28 interviews and casual observation of network sessions

    Extended Inclusive Fitness Theory bridges Economics and Biology through a common understanding of Social Synergy

    Full text link
    Inclusive Fitness Theory (IFT) was proposed half a century ago by W.D. Hamilton to explain the emergence and maintenance of cooperation between individuals that allows the existence of society. Contemporary evolutionary ecology identified several factors that increase inclusive fitness, in addition to kin-selection, such as assortation or homophily, and social synergies triggered by cooperation. Here we propose an Extend Inclusive Fitness Theory (EIFT) that includes in the fitness calculation all direct and indirect benefits an agent obtains by its own actions, and through interactions with kin and with genetically unrelated individuals. This formulation focuses on the sustainable cost/benefit threshold ratio of cooperation and on the probability of agents sharing mutually compatible memes or genes. This broader description of the nature of social dynamics allows to compare the evolution of cooperation among kin and non-kin, intra- and inter-specific cooperation, co-evolution, the emergence of symbioses, of social synergies, and the emergence of division of labor. EIFT promotes interdisciplinary cross fertilization of ideas by allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics.Comment: Bioeconomics, Synergy, Complexit
    • 

    corecore