124 research outputs found

    Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels

    Full text link
    Achieving optimal program performance requires deep insight into the interaction between hardware and software. For software developers without an in-depth background in computer architecture, understanding and fully utilizing modern architectures is close to impossible. Analytic loop performance modeling is a useful way to understand the relevant bottlenecks of code execution based on simple machine models. The Roofline Model and the Execution-Cache-Memory (ECM) model are proven approaches to performance modeling of loop nests. In comparison to the Roofline model, the ECM model can also describes the single-core performance and saturation behavior on a multicore chip. We give an introduction to the Roofline and ECM models, and to stencil performance modeling using layer conditions (LC). We then present Kerncraft, a tool that can automatically construct Roofline and ECM models for loop nests by performing the required code, data transfer, and LC analysis. The layer condition analysis allows to predict optimal spatial blocking factors for loop nests. Together with the models it enables an ab-initio estimate of the potential benefits of loop blocking optimizations and of useful block sizes. In cases where LC analysis is not easily possible, Kerncraft supports a cache simulator as a fallback option. Using a 25-point long-range stencil we demonstrate the usefulness and predictive power of the Kerncraft tool.Comment: 22 pages, 5 figure

    Automatic Loop Kernel Analysis and Performance Modeling With Kerncraft

    Full text link
    Analytic performance models are essential for understanding the performance characteristics of loop kernels, which consume a major part of CPU cycles in computational science. Starting from a validated performance model one can infer the relevant hardware bottlenecks and promising optimization opportunities. Unfortunately, analytic performance modeling is often tedious even for experienced developers since it requires in-depth knowledge about the hardware and how it interacts with the software. We present the "Kerncraft" tool, which eases the construction of analytic performance models for streaming kernels and stencil loop nests. Starting from the loop source code, the problem size, and a description of the underlying hardware, Kerncraft can ideally predict the single-core performance and scaling behavior of loops on multicore processors using the Roofline or the Execution-Cache-Memory (ECM) model. We describe the operating principles of Kerncraft with its capabilities and limitations, and we show how it may be used to quickly gain insights by accelerated analytic modeling.Comment: 11 pages, 4 figures, 8 listing

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor

    A domain-specific language and matrix-free stencil code for investigating electronic properties of Dirac and topological materials

    Full text link
    We introduce PVSC-DTM (Parallel Vectorized Stencil Code for Dirac and Topological Materials), a library and code generator based on a domain-specific language tailored to implement the specific stencil-like algorithms that can describe Dirac and topological materials such as graphene and topological insulators in a matrix-free way. The generated hybrid-parallel (MPI+OpenMP) code is fully vectorized using Single Instruction Multiple Data (SIMD) extensions. It is significantly faster than matrix-based approaches on the node level and performs in accordance with the roofline model. We demonstrate the chip-level performance and distributed-memory scalability of basic building blocks such as sparse matrix-(multiple-) vector multiplication on modern multicore CPUs. As an application example, we use the PVSC-DTM scheme to (i) explore the scattering of a Dirac wave on an array of gate-defined quantum dots, to (ii) calculate a bunch of interior eigenvalues for strong topological insulators, and to (iii) discuss the photoemission spectra of a disordered Weyl semimetal.Comment: 16 pages, 2 tables, 11 figure
    corecore