3,703 research outputs found

    Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality

    Full text link
    As virtually all aspects of our lives are increasingly impacted by algorithmic decision making systems, it is incumbent upon us as a society to ensure such systems do not become instruments of unfair discrimination on the basis of gender, race, ethnicity, religion, etc. We consider the problem of determining whether the decisions made by such systems are discriminatory, through the lens of causal models. We introduce two definitions of group fairness grounded in causality: fair on average causal effect (FACE), and fair on average causal effect on the treated (FACT). We use the Rubin-Neyman potential outcomes framework for the analysis of cause-effect relationships to robustly estimate FACE and FACT. We demonstrate the effectiveness of our proposed approach on synthetic data. Our analyses of two real-world data sets, the Adult income data set from the UCI repository (with gender as the protected attribute), and the NYC Stop and Frisk data set (with race as the protected attribute), show that the evidence of discrimination obtained by FACE and FACT, or lack thereof, is often in agreement with the findings from other studies. We further show that FACT, being somewhat more nuanced compared to FACE, can yield findings of discrimination that differ from those obtained using FACE.Comment: 7 pages, 2 figures, 2 tables.To appear in Proceedings of the International Conference on World Wide Web (WWW), 201

    Estimating the effect of healthcare-associated infections on excess length of hospital stay using inverse probability-weighted survival curves

    Get PDF
    Background: Studies estimating excess length of stay (LOS) attributable to nosocomial infections have failed to address time-varying confounding, likely leading to overestimation of their impact. We present a methodology based on inverse probability–weighted survival curves to address this limitation. Methods: A case study focusing on intensive care unit–acquired bacteremia using data from 2 general intensive care units (ICUs) from 2 London teaching hospitals were used to illustrate the methodology. The area under the curve of a conventional Kaplan-Meier curve applied to the observed data was compared with that of an inverse probability–weighted Kaplan-Meier curve applied after treating bacteremia as censoring events. Weights were based on the daily probability of acquiring bacteremia. The difference between the observed average LOS and the average LOS that would be observed if all bacteremia cases could be prevented was multiplied by the number of admitted patients to obtain the total excess LOS. Results: The estimated total number of extra ICU days caused by 666 bacteremia cases was estimated at 2453 (95% confidence interval [CI], 1803–3103) days. The excess number of days was overestimated when ignoring time-varying confounding (2845 [95% CI, 2276–3415]) or when completely ignoring confounding (2838 [95% CI, 2101–3575]). Conclusions: ICU-acquired bacteremia was associated with a substantial excess LOS. Wider adoption of inverse probability–weighted survival curves or alternative techniques that address time-varying confounding could lead to better informed decision making around nosocomial infections and other time-dependent exposures

    Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses

    Get PDF
    Random-effects meta-analyses of observational studies can produce biased estimates if the synthesized studies are subject to unmeasured confounding. We propose sensitivity analyses quantifying the extent to which unmeasured confounding of specified magnitude could reduce to below a certain threshold the proportion of true effect sizes that are scientifically meaningful. We also develop converse methods to estimate the strength of confounding capable of reducing the proportion of scientifically meaningful true effects to below a chosen threshold. These methods apply when a "bias factor" is assumed to be normally distributed across studies or is assessed across a range of fixed values. Our estimators are derived using recently proposed sharp bounds on confounding bias within a single study that do not make assumptions regarding the unmeasured confounders themselves or the functional form of their relationships to the exposure and outcome of interest. We provide an R package, ConfoundedMeta, and a freely available online graphical user interface that compute point estimates and inference and produce plots for conducting such sensitivity analyses. These methods facilitate principled use of random-effects meta-analyses of observational studies to assess the strength of causal evidence for a hypothesis
    • …
    corecore