9,317 research outputs found

    Post-peak ICT: graceful degradation for communication networks in an energy constrained future

    Get PDF
    In recent years, rising energy prices and increasing environmental concerns have boosted research in the so called green ICT and green networking research tracks, aimed at improving the energy efficiency of communications while still offering maximal functionality. In this article we explore a future scenario in which low power networking is no longer optional, but instead becomes a necessity due to fluctuating energy availability. The contribution of this work is twofold. First, we argue why a so called post-peak future scenario, in which we can no longer rely on fossil fuels as our main resource for electricity production, is not unlikely, and what it might entail. Second, we explore the consequences of such a scenario for ICT: How well can current and future infrastructures cope with temporary energy limitations? As an illustration, we present a case study showing the impact of reduced energy availability on a wireless access network

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    A QoS-Aware Scheduling Algorithm for High-Speed Railway Communication System

    Full text link
    With the rapid development of high-speed railway (HSR), how to provide the passengers with multimedia services has attracted increasing attention. A key issue is to develop an effective scheduling algorithm for multiple services with different quality of service (QoS) requirements. In this paper, we investigate the downlink service scheduling problem in HSR network taking account of end-to-end deadline constraints and successfully packet delivery ratio requirements. Firstly, by exploiting the deterministic high-speed train trajectory, we present a time-distance mapping in order to obtain the highly dynamic link capacity effectively. Next, a novel service model is developed for deadline constrained services with delivery ratio requirements, which enables us to turn the delivery ratio requirement into a single queue stability problem. Based on the Lyapunov drift, the optimal scheduling problem is formulated and the corresponding scheduling service algorithm is proposed by stochastic network optimization approach. Simulation results show that the proposed algorithm outperforms the conventional schemes in terms of QoS requirements.Comment: 6 pages, 3 figures, accepted by IEEE ICC 2014 conferenc

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure
    • …
    corecore