3 research outputs found

    Coordinating Agile Systems through the Model-based Execution of Temporal Plans

    Get PDF
    SM thesisAgile autonomous systems are emerging, such as unmanned aerial vehicles (UAVs), that must robustly perform tightly coordinated time-critical missions; for example, military surveillance or search-and-rescue scenarios. In the space domain, execution of temporally flexible plans has provided an enabler for achieving the desired coordination and robustness, in the context of space probes and planetary rovers, modeled as discrete systems. We address the challenge of extending plan execution to systems with continuous dynamics, such as air vehicles and robot manipulators, and that are controlled indirectly through the setting of continuous state variables.Systems with continuous dynamics are more challenging than discrete systems, because they require continuous, low-level control, and cannot be controlled by issuing simple sequences of discrete commands. Hence, manually controlling these systems (or plants) at a low level can become very costly, in terms of the number of human operators necessary to operate the plant. For example, in the case of a fleet of UAVs performing a search-and-rescue scenario, the traditional approach to controlling the UAVs involves providing series of close waypoints for each aircraft, which incurs a high workload for the human operators, when the fleet consists of a large number of vehicles.Our solution is a novel, model-based executive, called Sulu, that takes as input a qualitative state plan, specifying the desired evolution of the state of the system. This approach elevates the interaction between the human operator and the plant, to a more abstract level where the operator is able to Âcoach the plant by qualitatively specifying the tasks, or activities, the plant must perform. These activities are described in a qualitative manner, because they specify regions in the plantÂs state space in which the plant must be at a certain point in time. Time constraints are also described qualitatively, in the form of flexible temporal constraints between activities in the state plan. The design of low-level control inputs in order to meet this abstract goal specification is then delegated to the autonomous controller, hence decreasing the workload per human operator. This approach also provides robustness to the executive, by giving it room to adapt to disturbances and unforeseen events, while satisfying the qualitative constraints on the plant state, specified in the qualitative state plan.Sulu reasons on a model of the plant in order to dynamically generate near-optimal control sequences to fulfill the qualitative state plan. To achieve optimality and safety, Sulu plans into the future, framing the problem as a disjunctive linear programming problem. To achieve robustness to disturbances and maintain tractability, planning is folded within a receding horizon, continuous planning and execution framework. The key to performance is a problem reduction method based on constraint pruning. We benchmark performance using multi-UAV firefighting scenarios on a real-time, hardware-in-the-loop testbed

    Robust Execution of Bipedal Walking Tasks From Biomechanical Principles

    Get PDF
    PhD thesisEffective use of robots in unstructured environments requires that they have sufficient autonomy and agility to execute task-level commands successfully. A challenging example of such a robot is a bipedal walking machine. Such a robot should be able to walk to a particular location within a particular time, while observing foot placement constraints, and avoiding a fall, if this is physically possible. Although stable walking machines have been built, the problem of task-level control, where the tasks have stringent state-space and temporal requirements, and where significant disturbances may occur, has not been studied extensively. This thesis addresses this problem through three objectives. The first is to devise a plan specification where task requirements are expressed in a qualitative form that provides for execution flexibility. The second is to develop a task-level executive that accepts such a plan, and outputs a sequence of control actions that result in successful plan execution. The third is to provide this executive with disturbance handling ability.Development of such an executive is challenging because the biped is highly nonlinear and has limited actuation due to its limited base of support. We address these challenges with three key innovations. To address the nonlinearity, we develop a dynamic virtual model controller to linearize the biped, and thus, provide an abstracted biped that is easier to control. The controller is model-based, but uses a sliding control technique to compensate for model inaccuracy. To address the under-actuation, our system generates flow tubes, which define valid operating regions in the abstracted biped. The flow tubes represent sets of state trajectories that take into account dynamic limitations due to under-actuation, and also satisfy plan requirements. The executive keeps trajectories in the flow tubes by adjusting a small number of control parameters for key state variables in the abstracted biped, such as center of mass. Additionally, our system uses a novel strategy that employs angular momentum to enhance translational controllability of the systemÂs center of mass. We evaluate our approach using a high-fidelity biped simulation. Tests include walking with foot-placement constraints, kicking a soccer ball, and disturbance recovery

    Qualitative modeling and heterogeneous control of global system behavior

    No full text
    Abstract. Multiple model approaches to the control of complex dynamical systems are attractive because the local models can be simple and intuitive, and global behavior can be analyzed in terms of transitions among local operating regions. In this paper, we argue that the use of qualitative models further improves the strengths of the multiple model approach by allowing each local model to describe a large class of useful non-linear dynamical systems. In addition, reasoning with qualitative models naturally identifies weak sufficient conditions adequate to prove qualitative properties such as stability. We demonstrate our approach by building a global controller for the free pendulum. We specify and validate local controllers by matching their structures to simple generic qualitative models. This process identifies qualitative constraints on the controller designs, sufficient to guarantee the desired local properties and to determine the possible transitions between local regions. This, in turn, allows the continuous phase portrait to be abstracted to a simple transition graph. The degrees of freedom in the design that are unconstrained by the qualitative description remain available for optimization by the designer for any other purpose.
    corecore