
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-029 April 28, 2006

Coordinating Agile Systems through the
Model-based Execution of Temporal Plans
Thomas LEAUTE

Coordinating Agile Systems through the

Model-based Execution of Temporal Plans

by

Thomas Léauté

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2005

c©Massachusetts Institute of Technology 2005. All rights reserved.
First Copy

Author .
Department of Aeronautics and Astronautics

July 25, 2005

Certified by. .
Brian C. Williams

Associate Professor
Thesis Supervisor

Accepted by .
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

2

Coordinating Agile Systems through the

Model-based Execution of Temporal Plans

by

Thomas Léauté

Submitted to the Department of Aeronautics and Astronautics
on July 25, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Agile autonomous systems are emerging, such as unmanned aerial vehicles (UAVs),
that must robustly perform tightly coordinated time-critical missions; for example,
military surveillance or search-and-rescue scenarios. In the space domain, execution
of temporally flexible plans has provided an enabler for achieving the desired coordi-
nation and robustness, in the context of space probes and planetary rovers, modeled
as discrete systems. We address the challenge of extending plan execution to systems
with continuous dynamics, such as air vehicles and robot manipulators, and that are
controlled indirectly through the setting of continuous state variables.

Systems with continuous dynamics are more challenging than discrete systems,
because they require continuous, low-level control, and cannot be controlled by issuing
simple sequences of discrete commands. Hence, manually controlling these systems
(or plants) at a low level can become very costly, in terms of the number of human
operators necessary to operate the plant. For example, in the case of a fleet of UAVs
performing a search-and-rescue scenario, the traditional approach to controlling the
UAVs involves providing series of close waypoints for each aircraft, which incurs a
high workload for the human operators, when the fleet consists of a large number of
vehicles.

Our solution is a novel, model-based executive, called Sulu, that takes as input
a qualitative state plan, specifying the desired evolution of the state of the system.
This approach elevates the interaction between the human operator and the plant,
to a more abstract level where the operator is able to “coach” the plant by qualita-
tively specifying the tasks, or activities, the plant must perform. These activities are
described in a qualitative manner, because they specify regions in the plant’s state
space in which the plant must be at a certain point in time. Time constraints are also
described qualitatively, in the form of flexible temporal constraints between activities
in the state plan. The design of low-level control inputs in order to meet this abstract
goal specification is then delegated to the autonomous controller, hence decreasing
the workload per human operator. This approach also provides robustness to the
executive, by giving it room to adapt to disturbances and unforeseen events, while

3

satisfying the qualitative constraints on the plant state, specified in the qualitative
state plan.

Sulu reasons on a model of the plant in order to dynamically generate near-optimal
control sequences to fulfill the qualitative state plan. To achieve optimality and safety,
Sulu plans into the future, framing the problem as a disjunctive linear programming
problem. To achieve robustness to disturbances and maintain tractability, planning
is folded within a receding horizon, continuous planning and execution framework.
The key to performance is a problem reduction method based on constraint pruning.
We benchmark performance using multi-UAV firefighting scenarios on a real-time,
hardware-in-the-loop testbed.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor

4

Acknowledgments

I would first like to thank the people who actively helped me accomplish the work

described in this thesis, and whose support was particularly helpful in the final writing

phase: Hui, Tsoline, Andreas, Jake, and, above all, Brian, whose help and insight have

been critical and inspiring, throug the months I spent working in the MERS group.

Other important contributors and lab mates are, in increasing lexicographic order:

Bobby, Dimitri, Greg, John (a.k.a. Stedl), Lars, Marcia, Margaret (a.k.a. Peggy),

Martin, Ollie, Paul E. and Paul R.; followed by the ones whose names start with an S:

Seung, Shen, Steve and Stano. I also wanted to mention the people whose company

I wish I had had more time to appreciate: Brad, I-hsiang, Jon, and Larry.

Apart from the research carried out in the MERS group, the work accomplished

by the following people has also been very inspiring: Éric Féron, whose outstanding

enthusiasm deserves recognition, Jon How, Yoshi Kuwata, Tom Schouwenaars, Arthur

Richards, and John Bellingham.

I would like to thank my family: my parents and brothers, for helping me find

my way, and helping me achieve what I have achieved so far; my grandparents and

godparents for their support, with a special mention to Mamie Nanie. I would also like

to mention some of the teachers who inspired and helped me discover my passion for

sciences: M. Gilouppe, M. Douillet, Jean-Louis Clément, M. Deschamps, M. Capéran,

Étienne Klein, as well as Christophe Barroy and Mr Waston.

Finally, I would like to thank the Rotary Foundation, and my extended Rotary

Family (hoping that I am not forgetting anyone): Karen Swaim Babin, Jim and

Susana Brown, Jean-Pierre Charlot, Nick and Rosemary Czifrik, Donna D’Agostino,

Euiheon, Susan Frick, Thorsteinn Gislason, Hélène and Bernard Gourdeau, Klaus

and Glenys Hachfeld, Keith Harris, Gene Hastings, Huria, Hans Ikier, Julia, Wilson

Lee, Ranna Parekh, Phillippa, René, Jamie Santo, Sarah, and Stefano.

This research was supported in part by The Boeing Company under contract

MIT-BA-GTA-1, and by the Air Force Research Lab award under contract F33615-

01-C-1850.

5

Science sans conscience
n’est que ruine de l’âme.
François Rabelais (1494-1553)

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Challenges and Required Capabilities 16

1.3 Approach and Innovations . 18

1.4 Example . 20

1.5 Outline . 22

2 Related Work 25

2.1 Temporal Plan Execution . 26

2.1.1 Previous Work in Dispatchable Plan Execution 26

2.1.2 Comparison with Our Approach 28

2.2 Qualitative, State-level Control . 30

2.2.1 Model-based Execution . 30

2.2.2 Hybrid Automata and Qualitative Control 34

2.3 Model Predictive Control . 36

3 Problem Statement 39

3.1 Multiple-UAV Fire-fighting Example 39

3.2 Definition of a Plant Model . 40

3.2.1 Overall Definition of a Plant Model 41

3.2.2 Definition of a Forbidden Region 42

3.2.3 Definition of a State Equation 44

3.2.4 Application to Hybrid Automata 47

7

3.3 Definition of a Qualitative State Plan 50

3.3.1 Overall Definition of a Qualitative State Plan 51

3.3.2 Definition of a Schedule . 52

3.3.3 Definition of an Activity . 52

3.3.4 Definition of a Temporal Constraint 54

3.3.5 Definition of an Objective Function 55

3.3.6 Comparison with Metric Interval Temporal Logic 56

3.4 Definition of the HMEx Problem . 58

3.4.1 Definition of Hybrid Model-based Execution 58

3.4.2 State Estimation . 60

3.4.3 Control Sequence Generation 60

3.4.4 Comparison with Previous Work 63

3.5 Overall Approach to Solving HMEx 64

3.5.1 Infinite Horizon HMEx . 65

3.5.2 Receding Horizon HMEx . 66

3.5.3 Comparison with Related Work 71

4 Encoding the HMEx Problem as a Disjunctive Linear Program 75

4.1 Overall DLP Approach and Comparison with Previous Work 75

4.1.1 Motivation . 76

4.1.2 Disjunctive Linear Programming Formalism 77

4.1.3 HMEx as a DLP . 77

4.1.4 Relation with Previous Work 78

4.2 Encoding Infinite Horizon HMEx . 78

4.2.1 Plant Model Encodings . 79

4.2.2 Qualitative State Plan Encodings 87

4.3 Encoding Single-stage Limited Horizon HMEx 91

4.3.1 Revised Encoding for End in Activities 91

4.3.2 Guidance Heuristic for End in Activities 92

8

5 Constraint Pruning Policies 99

5.1 Overall Constraint Pruning Framework 99

5.2 Plant Model Constraint Pruning . 101

5.2.1 Forbidden Region Constraint Pruning 101

5.2.2 State Equation Constraint Pruning 104

5.2.3 State Initialization Constraint Pruning 104

5.3 Qualitative State Plan Constraint Pruning 105

5.3.1 Temporal Constraint Pruning 106

5.3.2 Remain in Constraint Pruning (Alg. 7 and 8) 113

5.3.3 End in Constraint Pruning (Alg. 9) 114

5.3.4 Guidance constraint pruning (Alg. 10) 116

6 Implementation and Performance Analysis 119

6.1 Pseudocode for Sulu . 119

6.1.1 Offline Algorithm (Alg. 11) 119

6.1.2 Online Receding Horizon HMEx Algorithm (Alg. 12) 120

6.2 Step-by-step Algorithm Demonstration 123

6.2.1 Initialization . 124

6.2.2 First iteration (t0 = T0 = 0) 125

6.2.3 Second iteration (t0 = T0 + nt ·∆t = 10) 127

6.3 Implementation on a UAV Testbed 128

6.4 Model-based Executive Performance Analysis on a More Complex Test

Case . 130

6.4.1 Description of the Test Case 131

6.4.2 Performance Analysis . 133

7 Conclusion and Future Work 137

7.1 Future Work . 137

7.1.1 Improvements and Extensions of the HMEx Algorithm 137

7.1.2 Improvements on the Constraint Pruning Framework 141

7.1.3 Integration with an HTN Planner 144

9

7.2 Conclusion . 144

A Proof of Equivalence between the Two State Equation Encodings in

Eq. (4.8) and (4.9) 147

10

List of Figures

1-1 Qualitative state plan in the fire-fighting example. 20

1-2 Map of the environment for the multiple-UAV fire-fighting scenario,

and initial partial trajectories computed by Sulu. 21

1-3 Modified trajectories computed by Sulu in order to adapt to a change

in the environment. 22

2-1 Edge-splitting operation, applied to the edges in the STN graph (a),

in order to construct the associated distance graph (b). 28

2-2 Traditional approach to designing embedded systems (left), versus the

model-based approach (right), which elevates the level of interaction

with the plant. 30

2-3 Block diagram of the model-based executive Titan. 31

3-1 Map of the terrain for the fire-fighting example. 40

3-2 Any general, non-convex region (A) can be approximated by a finite

union of linearized, convex regions (B and C). This figure was taken

from [34]. 42

3-3 Example of a forbidden region PS in the UAV fire-fighting scenario. . 43

3-4 Thermostat hybrid automaton. [23] 48

3-5 Qualitative state plan in the fire-fighting example. 51

3-6 Block diagram of a hybrid model-based executive. 59

3-7 Timeline illustrating the single-stage, limited horizon HMEx problem

at time t0 (Def. 15). 68

11

3-8 Information flow diagram for the single-stage, limited horizon HMEx

problem at time t0 (Def. 15). 69

3-9 Sulu’s receding horizon hybrid controller. 70

4-1 Rectangular no-fly-zone in the UAV fire-fighting example. 83

4-2 a) Forbidden region corresponding to values of the velocity smaller

than the minimum allowed value; b) Linearized version of the forbidden

region. 84

4-3 Derivation of a start in activity from an end in activity. 88

4-4 Derivation of a go through activity from an end in activity. 88

4-5 Guidance heuristic for an end in activity involving a particular air-

craft αj. 94

4-6 Example of a guidance heuristic for a fire-fighting UAV. 95

4-7 Guidance heuristic used in [10]. 96

4-8 Simple example showing a limitation of the approach used in [10]. . . 97

4-9 Our guidance heuristic correctly guides the plant around the forbidden

region. 98

5-1 Computation of the distance graph: each arc in the qualitative state

plan (a) is split into two arcs in the distance graph (b). 106

5-2 Example of an implied temporal constraint. 107

5-3 Example of a state plan where the pruning policy in Alg. 5 entails

infeasible schedules. 108

5-4 Illustration of the different cases in Alg. 5 (shaded areas are time peri-

ods outside of the current planning window [t0, tNt]) : a) eS has already

been executed (line 1); b) eS is out of reach within the current horizon

(line 4); c) eE has already been executed (line 7); d) eE is out of reach

within the current horizon (line 10). 109

5-5 Illustration of the different cases in Alg. 6: a) e has already been

executed (line 1); b) e is out of reach within the current horizon (line 4).111

12

5-6 Illustration of the different cases in Alg. 7: a) The activity is completed

(line 1); b) The activity is being executed (line 4); c) The activity will

start beyond tNt (line 7); d) The activity will start within tNt (line 10). 112

5-7 Temporal propagation of a change in a unary temporal constraint. . 114

5-8 Illustration of the different cases in Alg. 9: a) eE has already occurred

(line 1); b) eE will be scheduled within tNt (line 4); c) eE will be

scheduled beyond tNt (line 7). 115

5-9 Illustration of the different cases in Alg. 10: a) eE will be scheduled

within the horizon (line 1); b) eS will be scheduled beyond the horizon

(line 4). 116

6-1 Qualitative state plan in the fire-fighting example. 123

6-2 Map of the terrain for the fire-fighting example. 124

6-3 “Snapshots” of the schedule for the qualitative state plan in Fig. 3-5,

at different steps in the algorithm execution: a) First iteration (t0 =

T0 = 0), Step 3 (line 20); b) Second iteration (t0 = T0 + nt ·∆t = 10),

Step 3 (line 20); c) End of second iteration (t0 = T0 + 2nt · ∆t = 20,

line 33). The bold dots represent the values of T (e) for each event e,

and the segments represent the bounds [Tmin
e , Tmax

e] on T (e). 125

6-4 Trajectories computed at the first iteration (in bold: up to tnt ; in light:

between tnt and tNt) . 126

6-5 Trajectories computed at the second iteration (in bold: up to tnt ; in

light: between tnt and tNt) . 128

6-6 Architecture of the CloudCap testbed. This picture was taken from [15] 129

6-7 Map of the environment in the multi-UAV fire-fighting scenario. . . . 131

6-8 Qualitative state plan used for performance analysis. 132

6-9 Performance gain by constraint pruning. 134

6-10 Performance of Sulu. 135

13

14

Chapter 1

Introduction

1.1 Motivation

Robust, autonomous coordination of agile dynamic systems has application in a wide

variety of fields. Much work has been done in the past few years on the coordinated

control of autonomous unmanned air vehicles (UAVs) [3], which can be used, for

instance, for surveillance and target identification on a widespread battlefield. Non-

military applications can also be of high interest for these kinds of systems, such as

situation assessment in case of an earthquake or a forest fire, in order to identify,

localize and provide urgent assistance to populations waiting to be rescued. A fleet of

small cooperative agile vehicles, like indoor/outdoor helicopters, or wheeled/legged

ground vehicles, could be very useful to rescuers in the context of an accident where

victims might be isolated in places of difficult or dangerous access, such as a building

in fire.

Cooperative vehicles offer just one of a growing number of examples of agile sys-

tems for which autonomous coordinated control will enable unprecedented levels of

capability or robustness. Agile systems with moving parts, such as robot arms and

manipulators [46], represent another wide domain of application, as well as industrial

robots performing robust coordinated tasks in a factory, or robots on orbit or on

Mars, coordinating the assembly of a telescope or a Martian habitat. Moreover, a

Martian life support system in itself can be considered a system with “agile”, con-

15

tinuous dynamics, for which robust synchronized control is absolutely critical [25].

More generally, this also applies to industrial chemical plants, where the control of

fast chemical processes requires robust coordinated control [67].

1.2 Challenges and Required Capabilities

Autonomous control over dynamic systems, such as the ones previously mentioned,

raises a number of challenges, which need to be addressed by extending the current

state of the art in autonomous control.

The first challenge comes from the fact that most of the aforementioned applica-

tions involve time-critical missions, in which the system under control, that is, the

plant, must be able to operate under tight temporal constraints. For example, in the

case of a team of UAVs cooperating to extinguish forrest fires, given estimates of the

speed of progression of the fire fronts, it might be necessary to visit certain populated

locations before a certain time, in order to look for victims who might get trapped

between two fronts. It might also be necessary to monitor the evolution of the fire by

flying over specific regions at regular time intervals.

This motivates the need for an autonomous controller that is able to provide

some level of temporal coordination, by reasoning about deadlines and temporal con-

straints provided by the human operator, and by controlling the plant within these

coordination constraints.

The second major challenge has to do with the continuous, dynamical nature of

the plant. A fixed-wing aircraft, for instance, is a system with fast, agile, continuous

dynamics, which requires continuous, low-level control. Current normal operations

of such UAVs involves providing series of close waypoints that the aircraft must

closely follow. It is possible for a human operator to provide such a low-level control

over the plant; however, many applications such as forest fire suppression would

require the coordination of several of these UAVs, in order to efficiently accomplish

the mission within the given tight time constraints. As the number of aircraft in the

team increases, low-level control of such fleets of cooperating UAVs quickly becomes

16

very costly in terms of the number of human operators necessary to operate the plant.

An autonomous controller for these systems should, therefore, elevate the level

of interaction with the plant, so as to raise the ratio of the number of aircraft over

the required number of human operators. The operator should be able to provide

task-level, supervisory control of the plant, by specifying tasks that the system must

perform, and that are described in terms of abstract, qualitative states that the plant

must go through, hence delegating low-level control to the autonomous controller.

Examples of such tasks in the fire-fighting scenario are high-level goals that each UAV

must contribute to achieve, such as visiting a set of locations in minimum time. This

elevates the interaction with the plant with regards to traditional control approaches,

where the human operator must control the plant by providing low-level trajectories,

rather than more abstract, qualitative tasks that the aircraft must perform.

Finally, a third important challenge raised by the autonomous control of these

systems is that they often evolve in dangerous, dynamic and unpredictable environ-

ments. Forrest fire suppression is a very relevant example of a dynamic environment

in which, although human operators might have access to models of forrest fires that

enable them to predict the progression of the fire over a certain period of time, and

to plan a strategy accordingly, it is often necessary to revise these strategies in real

time, as the situation is evolving. A new fire front might appear that had not been

anticipated, or the winds might change.

To deal with this third challenge, the autonomous controller must be able to exert

robust, adaptive control over the dynamic system. It must be robust to low-level

disturbances inherent to the dynamics of the plant, such as unpredictable wind con-

ditions that affect the behavior and the responsiveness of the aircraft. This level of

robustness can usually be provided by traditional, classical controllers, which are able

to compensate for low-level disturbances in order to maintain the plant as close as

possible to a given set point, or to make the plant follow series of set points. How-

ever, as mentioned before, an autonomous controller for the types of aforementioned

autonomous systems should take in a more abstract, qualitative goal specification.

It must therefore be able to adapt to higher-level unforeseen events. For instance,

17

the fire might be more widespread than initially estimated, requiring the UAVs to

spend more time taking pictures of the fire in order to provide human operators with

sufficient situation awareness. To this effect, controlling the plant by providing a

qualitative description of the desired abstract plant state evolution delegates more

control authority to the autonomous controller, and leaves it more room to adapt to

high-level disturbances in real time.

1.3 Approach and Innovations

In order to provide those three main required capabilities, we propose a method to

control the plant by specifying an abstract, task-level description of the desired plant

state evolution, in the form of a qualitative state plan. We introduce a capability for

robust, model-based execution of such qualitative state plans, for plants with contin-

uous dynamics.

As we argued in the previous section, for time-critical applications such as multiple-

UAV fire-fighting scenarios, it is particularly important for the autonomous controller

to be able to provide temporal coordination to the plant. Furthermore, in order to

elevate the level of interaction with the plant, the human operator should control the

plant by providing task-level, qualitative descriptions of the abstract states the plant

should go through, ignoring low-level control details. In particular, the operator must

be able to reason in terms of the goals that must be achieved, rather than focus on

the means to achieve these goals.

We provide this capability by writing the input to the autonomous controller in

the form of a qualitative state plan. A qualitative state plan is a description of the

mission the plant must accomplish, in terms of tasks, or activities, that the plant must

perform in order to fulfill the mission. It is qualitative, in that the activities specify

successive qualitative states the plant must go through. The qualitative state plan

pieces these activities together in the form of a temporal plan. This temporal plan

uses time constraints between activities in order to specify precedence constraints,

and constraints on the duration of activities and the time at which they must be

18

performed. The temporal constraints in the plan are also described in a qualitative,

temporally flexible manner; hence, the human operator is able to supervise the system

by providing high-level temporal guidelines that the plant must follow.

In order to map the qualitative state plan to low-level control inputs that lead

the plant through the specified qualitative state evolution, we introduce a hybrid

model-based executive, called Sulu, which reasons from a model of the dynamics of

the plant in order to design those command sequences. The model is hybrid, because

rather than involving only discrete variables, it involves both continuous and discrete

variables. The flexibility in the qualitative state plan provides margins of maneuver

to the model-based executive, allowing it to robustly adapt to disturbances and un-

foreseen events. While a traditional, classical controller would only be able to adapt

to low-level disturbances that move the plant state away from a provided set point

or trajectory, our approach delegates more control authority to the model-based ex-

ecutive, which can adapt to higher levels of disturbances and unexpected events, by

exploiting the flexibility in the qualitative state plan.

In order to adapt to disturbances, Sulu interleaves planning and execution over

short planning windows, and continuously re-plans to take into account the latest

knowledge of the state of the plant and the environment. This is done by framing the

problem as an instance of receding horizon control ; we call the resulting executive a

receding horizon, hybrid model-based executive.

Reasoning iteratively over short planning windows also reduces the complexity of

the problem, by allowing Sulu to look into the future only up to a limited planning

horizon, rather than design control sequences for the whole qualitative state plan,

which can soon become intractable when the plan involves a large number of activities.

We also introduce novel pruning policies that Sulu uses to prune parts of the search

space of all possible control sequences, in order to find an optimal control sequence

for the plant in real time.

The resulting model-based executive we present in this thesis builds upon previous

work in model-based programming [66], by applying the model-based paradigm to

plants with continuous dynamics. By framing the problem that we are addressing

19

e1 e2 e3 e5
End in [!1 at fire]

!

[6,")

Remain in [!1 at fire]

!

[5,8]

Remain in [!2 at fire]

!

[2,3]

e4

!

[0,")

End in [!2 at fire]

!

[12,") !

[0,")!

[0,20]

Start in [!1 & !2 at base]

Figure 1-1: Qualitative state plan in the fire-fighting example.

as a temporal plan scheduling and execution problem, we are able to leverage off

of previous work on execution of temporally flexible plans [7, 13, 49, 60, 61, 65].

This work addressed the problem of plan dispatching and execution, and provided

robustness through the use of a receding horizon framework that interleaves planning

and execution. This framework had previously been developed and applied to the

control of plants with continuous dynamics, in the field of chemical process control

[24, 51, 52, 54]. More recently, receding horizon control was also successfully applied to

the control of multiple aircraft [10, 39, 57], through the use of Mixed Integer Linear

Programming (MILP). Much of our work is inspired by this last field of research,

although we use a Disjunctive Linear Programming (DLP) formalism [9, 34, 42, 43],

rather than MILP. Another important difference is that we enable the human operator

to control the plant by specifying desired qualitative regions in the state space that

the plant should remain in or go through, as it is executing the qualitative state plan.

This qualitative approach builds upon related work in qualitative control [37, 53],

in which the plant dynamics are described in an abstract, qualitative manner, that

enables the operator to reason in terms of abstract states that the plant should be

in, rather than details of low-level control.

1.4 Example

In this section, we shortly present an example of application, in the context of a

multiple-UAV fire-fighting scenario. This example will be presented in more detail in

the next chapters, since we use it throughout this thesis to illustrate this work. In this

20

Figure 1-2: Map of the environment for the multiple-UAV fire-fighting scenario, and
initial partial trajectories computed by Sulu.

example, the plant consists of two fixed-wing UAVs, which evolve in an environment

(Fig. 1-2) that has a reported fire. The team of UAVs is assigned to collectively

extinguish the fire, by navigating around forbidden regions (e.g. no-fly-zones) and

by dropping water on the fire. The aircraft must also take pictures after the fire has

been extinguished, in order to assess the damage. A natural language description for

the mission’s qualitative state plan is:

Aircraft α1 and α2 start at base stations Base 1 and Base 2, respectively.

α1 (a water tanker UAV) must reach the fire region and remain there for

5 to 8 time units, while it drops water over the fire. α2 (a reconnaissance

UAV) must reach the fire region after α1 is done dropping water and must

remain there for 2 to 3 time units, in order to take pictures of the damage.

The overall plan execution must last no longer than 20 time units.

This qualitative state plan can be represented by an acyclic, directed graph, illus-

trated in Fig. 1-1. The formalism and conventions used in this graphical representa-

tion will be introduced in Section 3.3.

As presented in Fig. 1-2, Sulu designs trajectories for the two UAVs up to a limited

horizon of 15 time steps (the numbers next to each waypoint in the trajectories are

21

Figure 1-3: Modified trajectories computed by Sulu in order to adapt to a change in
the environment.

the indexes of the corresponding time steps). Aircraft α1 is scheduled to reach the fire

at time step 8, and to remain in the fire region for 5 time steps, which is consistent

with the temporal constraints in the qualitative state plan.

However, while the aircraft are following these initial trajectories, new information

is gathered about the environment (for instance, by analyzing incoming satellite data),

and the fire turns out to be less spread out than originally foreseen (Fig. 1-3). As

a consequence, the initial trajectory for aircraft α1 no longer satisfies the qualitative

state plan, because it would make α1 remain over the fire during less than 5 time

steps. Sulu is able to adapt to this unforeseen event by modifying the trajectories for

the UAVs, in order for aircraft α1 to remain over the fire region for at least 5 time

steps. The new trajectories are uploaded to the UAVs at time step 10, and lead the

team to completion of the mission.

1.5 Outline

The rest of this thesis is organized as follows. In Chapter 2, we first describe relevant

previous work in the fields of model-based programming, temporal planning, and

22

model-predictive control and qualitative control, and how this work tackled some of

the challenges that we mentioned in this introduction. We then present the problem

statement and a multiple-UAV fire-fighting example, used throughout the thesis to

illustrate our work, and we introduce our general approach to execution of temporal

plans for hybrid systems (Chapter 3). In Chapter 4, we present in more detail the

mathematical formalism we use to encode the qualitative state plan and the plant

model. Chapter 5 introduces novel constraint pruning policies that enable us to

achieve tractability and real-time execution. In Chapter 6, we present the details

of our algorithm, a walkthrough example to illustrate our approach, and empirical

results and a performance analysis. Finally, Chapter 7 concludes this thesis, and

presents possible areas of future work.

23

24

Chapter 2

Related Work

In Section 1.2, we introduced three challenges that arise from autonomous control

of agile, dynamical systems, and we presented three capabilities that an autonomous

controller should deliver, in order to tackle these three challenges. First, the au-

tonomous controller should be able to provide temporal synchronization of the plant,

by generating control sequences that satisfy deadlines and temporal constraints pro-

vided by the human operator. In Section 2.1, we describe related work in temporal

plan execution, which provides this capability, by framing the problem as a temporal

plan execution problem. Second, in order to enable the human operator to deal at

a high level with the continuous dynamics of the plant, the autonomous controller

should elevate the level of interaction with the plant, so as to enable the human con-

troller to specify the desired qualitative behavior of the plant in terms of state, rather

than in terms of low-level control inputs. Previous work in model-based programming

tackled this challenge in the context of discrete systems; we describe this model-based

paradigm in Section 2.2, as well as previous work on hybrid automata and qualitative

control, which relates to the plant models we use in this thesis in order to describe

plants with continuous dynamics. Finally, the autonomous controller should be ro-

bust to disturbances and unforeseen events; in Section 2.3, we refer to previous work

in model predictive control, which provides robustness by interleaving planning and

execution.

25

2.1 Temporal Plan Execution

As argued in Section 1.2, in order to control agile, dynamical systems, such as a fleet

of fire-fighting UAVs performing a time-critical mission, the human operator should

be able to specify deadlines and temporal constraints that the autonomous controller

must satisfy, when designing control sequences for the plant. In Section 1.3, we pre-

sented our overall approach to providing this capability, which consists of formulating

the goal specification for the controller in the form of a temporal plan. In this section,

we show how our approach relates to previous work on temporally flexible plans.

2.1.1 Previous Work in Dispatchable Plan Execution

In order to represent temporally flexible plans, [17] introduced the concept of a Simple

Temporal Network (STN), which built upon previous work on representing qualitative

and metric temporal constraints [4]. An STN consists of instantaneous events, linked

by simple temporal constraints, in the form of a lower bound and an upper bound on

the allowed time between two events. An STN is represented as an acyclic, directed

graph, in which nodes stand for events, and the temporal constraints are represented

by arcs between events, labeled with the corresponding time bounds. Events usually

stand for timepoints corresponding to the beginning or the end of an activity, spec-

ifying a command that must be sent to the plant, or an action that the plant must

perform. In this thesis, in order to represent temporally flexible plans for systems

with continuous dynamics, we use qualitative state plans (Section 3.3). A qualitative

state plan can be seen as an STN, in which the events stand for start and end events

of activities, where activities specify an abstract, qualitative region of the state space

that the plant should be in, rather than a low-level command that the plant should

execute.

In order to execute a temporally flexible plan, one must generate a schedule for the

plan, that is, an assignment of execution times for every event in the plan. Although

such a schedule could be computed beforehand, in real-life applications, the schedule

is computed on the fly, as the events are being executed. This allows the system to

26

take advantage of the temporal flexibility in the plan, by dynamically generating the

schedule in order to be robust to execution uncertainty, such as an unexpected delay

between the time when the plant is commanded to start an action, and the time when

the action eventually starts. Rather than computing a complete schedule beforehand,

the problem then consists of, given a selected execution time for some early events

in the plan, determining a range of allowed execution times for the later events, such

that the overall schedule is temporally consistent.

The solution introduced in [62] and later applied in [17, 49, 60, 61] is, whenever an

event in the plan gets assigned a fixed execution time, to propagate the consequences

to the other events, in order to compute updated ranges of allowed execution times

for these events. As described in Section 5.3.1, we use the same approach, in order to

compute bounds on the times at which events in the plan can be scheduled. These

bounds are then used both to enforce temporal consistency, as in the aforementioned

previous work, and also to determine whether or not an event may be scheduled

within the current planning window; this information is used by the pruning policies

presented in Section 5.3.

Since this temporal propagation process happens in real time, as events are being

executed, this must be done efficiently. In [17, 49, 60, 61], this is done by pre-compiling

temporal constraints in the plan, in a way that local, one-step inference suffices.

For a given event e that has just been executed, one can then perform temporal

propagation only to the immediate neighboring events in the STN, by going through

the list of incoming and outgoing arcs for e, and operating a one-step propagation

along these arcs. This compilation process consists in making explicit all lower and

upper time bounds, between all pairs of events in the STN; the resulting plan is then

called a dispatchable plan, in which, by definition, single-step temporal propagation

to immediate neighboring events is sufficient.

The dispatchable plan is generated using a distance graph, which is obtained from

the graph corresponding to the STN by applying the edge-splitting operation in Fig. 2-

1 to all the edges in the STN graph. The distances between any pair of events in

the STN are then computed by running an all-pairs shortest path algorithm on the

27

[LB, UB]

Activity B

(R=1)

1

P=1 Q=1

2

e
1

e
2

e
1

e
2

a b

!

"T
e1#e2

min
,"T

e1#e2

max[]

!

+"T
e
1
#e

2

max

!

"#T
e
1
$e

2

min

Figure 2-1: Edge-splitting operation, applied to the edges in the STN graph (a), in
order to construct the associated distance graph (b).

distance graph; the resulting distances are stored in a new, fully connected distance

graph. As previously mentioned, in this thesis, we use the exact same method in order

to compute bounds on the times at which events may be scheduled (Section 5.3).

One issue that arises when using the method we just described, is that the dis-

patchable plan is fully connected, which can result in high computational loads in

terms of memory usage. This can also lead to high computation times, since the

propagation routine must effectively perform temporal propagation on all the events

in the plan, whenever an event e is executed, since e is connected to every other event.

To prevent this computational blow up, the algorithms in [17, 49, 60, 61] prune

temporal redundancy in the dispatchable plan, by only considering the arcs cor-

responding to tightest temporal bounds. This is preformed by running an edge-

trimming routine on the dispatchable plan, in order to remove the edges that are

dominated, that is, the edges that can be removed while keeping the plan dispatch-

able. The resulting plan is called a minimal dispatchable plan. This technique is

not used in this thesis, but could be applied to our state plan pruning framework

(Section 5.3); this is mentioned as future work in Section 7.1.2.

2.1.2 Comparison with Our Approach

As argued in Section 1.3 and in the previous paragraphs, our approach differs from

traditional work on temporally flexible plans, in that we consider qualitative state

plans, in which activities describe the desired qualitative behavior of the plant, in

terms of abstract regions of the state space in which the plant state must remain,

rather than low-level commands that the plant must execute. This approach is based

28

on a model-based paradigm, which we present in Section 2.2.1.

Another important difference between the work described in this thesis and pre-

vious work on dispatchable plan execution is the following. Approaches to temporal

plan execution based on executing a dispatchable plan usually perform a partial eval-

uation of the schedule at compile time, by computing tight bounds on the time at

which each event in the plan can be scheduled. The executive then commits to an

execution time for each event at run time, just before executing the event. This is

also the approach used in [26] in order to perform temporal plan execution for hybrid

systems; we describe this work in more detail in Section 2.2.1.

In this thesis, we also compute a dispatchable graph in order to have access to

bounds on the times at which events may be scheduled (Section 5.3.1); however,

instead of delaying the choice of an execution time for each event until the event is

about to be executed, our model-based executive commits to a complete schedule

over a limited planning window, and then incrementally shifts the planning window,

updating the schedule in order to respond to disturbances. This second approach is

similar to the continuous planning approach used in [13], which generates plans over

a limited planning window, and repairs the plans on the fly in response to unforeseen

events.

Our choice of a continuous planning approach is motivated by the fact that our

executive must generate control sequences for the plant, which are optimal with re-

spect to some objective function, as defined in Section 3.3.5. A reactive approach

would only work when the objective function is cumulative with time, in which case,

minimizing the objective value at any point in time leads to minimizing the overall

objective. In this thesis, however, we want to be able to specify more complex, non-

time-cumulative objective functions, such as, in the fire-fighting UAV example, the

minimization, over a given time window, of the number of episodes during which the

UAV’s absolute velocity remains greater than some threshold for more than 30 sec-

onds. Such complex objective functions require the executive to be able to plan into

the future, and could not be handled if the executive used a purely reactive approach.

29

5

1. Introduction

Embedded Program

Plant

Observations Commands

Model-based

Embedded Program

Plant

Observations Commands

Model-based Executive

States States

Figure 2-2: Traditional approach to designing embedded systems (left), versus the
model-based approach (right), which elevates the level of interaction with the plant.

2.2 Qualitative, State-level Control

2.2.1 Model-based Execution

As mentioned in the introduction to this chapter, a second challenge raised by the

autonomous control of agile, dynamical systems is the need for a high-level interaction

between the human operator and the under-actuated plant with hidden state. This

level of interaction should enable the operator to control the plant by specifying a

desired abstract plant state evolution, rather than low-level commands that the plant

must execute.

Model-based Execution of Discrete Systems

Previous work in model-based execution introduced a model-based executive, called

Titan [66], which addresses this problem, by acting as an interface between the human

operator and the plant. This is illustrated in Fig. 2-2. In the traditional approach

to designing embedded systems (Fig. 2-2, left), the engineers or the human operators

must design an embedded program that takes in observations directly from the plant,

and generates low-level commands, in order to control the plant. This task can be

difficult for complex systems, because the embedded program must be designed so

as to infer the state of the plant from a very dense flow of sensor information, and

30

15

1. Introduction

Mode

Reconfiguration

Mode

Estimation

Plant

State

Observations Command

Sequence

Plant Model Goal State

Command Sequence

Model-based Executive

Figure 2-3: Block diagram of the model-based executive Titan.

design commands accordingly. On the contrary, in a model-based, embedded system

(Fig. 2-2, right), a model-based executive provides low-level control and monitoring

of the plant, by constantly estimating the plant state from the observations. The

executive is also able to generate command sequences in order to achieve a given

goal state. This elevates the interaction with the plant, by allowing the engineers

to design embedded programs that effectively can read directly the values of state

variables that, in reality, may not be directly observable. An embedded program can

also directly “write” to state variables, that is, specify goal states for the plant, even

if the state variables are, in reality, not directly controllable. It accomplishes all this

by reasoning from a model of the plant.

In this thesis, we use the same model-based approach, by introducing Sulu, a

model-based executive that takes in a description of the desired state evolution of the

plant, in the form of a qualitative state plan, and generates low-level control sequences

in order to execute that plan, given estimates of the plant state, inferred from the

observations by reasoning over a model of the plant. In the following paragraphs, we

describe Titan in more detail, and we compare it with Sulu.

Fig. 2-3 illustrates the two main functions of Titan. The Mode Estimation (ME)

function takes in a sequence of observations and commands previously sent to the

plant, and infers an estimate of the current plant state. This estimate is used by the

31

Mode Reconfiguration (MR) function in order to generate a sequence of commands

that lead the plant to the desired goal state. These two functions can be mapped

directly to the two functions in Sulu, state estimation and control sequence gener-

ation, illustrated in Fig. 3-6. As explained in more detail in Section 3.4.4, the two

main differences between Titan and Sulu are that Titan was designed to reason on

models that are purely discrete, and does not allow the human operator to specify

temporal constraints on the plant. On the contrary, Sulu is able to control plants

with continuous dynamics, and designs control sequences that satisfy the temporal

constraints specified by the human operator, in the form of a qualitative state plan.

The plant models that the two model-based executives reason on are also conse-

quently different. In order to map a goal state to a sequence of commands, and a

sequence of observations to an estimate of the state of the plant, Titan reasons over a

plant model that describes, at an intuitive engineering level, the different components

in the plant, how each component works, and how all the components are connected

to each other. The plant model is represented using concurrent, constraint automata,

each automaton describing the laws that rule the transitions between discrete modes,

for a given component. Sulu’s plant model focuses more on describing the continuous

dynamics of the plant, and the forbidden regions in the state space that the plant

must avoid. This is presented formally in Sections 3.2 and 4.2.1. In Section 2.2.2, we

also relate Sulu’s plant model with previous work on hybrid automata and qualitative

control.

Model-based Execution of Systems with Continuous Dynamics

Other related work in model-based programming introduced a model-based execu-

tive, called Kirk, which was designed for the coordination of cooperative mobile sys-

tems [32]. One of the major innovations with respect to Titan is that Kirk reasons on

qualitative temporal constraints, in order to provide temporal synchronization over

the plant. Kirk is comprised of a temporal planner, which generates a temporally

flexible plan by selecting a hierarchy of possible contingencies, together with a plan

compiler and dispatcher, which execute the temporal plan efficiently, while adapting

32

to disturbances.

To select among contingencies, Kirk uses a Hierarchical Temporal Network plan-

ner [33], which takes as an input a high-level description of the desired abstract

activities that the plant must perform, written in RMPL (Reactive Model-based Pro-

gramming Language). Kirk then expands these abstract activities into lower-level

activities, using a database of macros, in order to generate a Temporal Plan Network

(TPN). The TPN builds upon temporally flexible plans, similar to qualitative state

plans; it involves events and flexible temporal constraints between events, as well

as activities that the plant must perform. With respect to temporally flexible plan

representation, a key difference with previous work described in Section 2.1.1 is that

it encodes contingencies through an additional construct, called a choose operator,

which specifies that one sequence of activities, among a set of redundant methods,

must be selected for execution. Kirk must then select one sequence of activities for

each choose operator in the TPN, such that the plan is temporally consistent [27],

that is, such that there exists a schedule that satisfies all the temporal constraints in

the TPN. [64] showed that this could be performed in a distributed fashion, and [63]

introduced methods in order to produce optimal schedules.

In order to execute the resulting temporally flexible plan, Kirk uses a plan compiler

and a dispatcher, in order to respectively compile the plan into a minimal dispatch-

able plan, and execute the dispatchable plan, using a method very similar to the

one presented in Section 2.1.1. Plan compilation and dispatching are performed in-

crementally [58], in order to enable fast replanning, when Kirk needs to switch to a

contingent plan to adapt to unforeseen events. [58] also showed that the dispatchable

plans generated by the plan compiler could be executed on a distributed architecture,

under communication limitations.

[63] modified Kirk’s temporal planning algorithm in order to partially extend it

to continuous plants, while the initial algorithm introduced in [33] could only handle

discrete plants. Rather than reasoning over TPNs, [63] reasons over RoadMapTempo-

ral Plan Networks (RMTPNs). RMTPNs extend TPNs by adding information about

the desired physical location of the vehicles to the temporally flexible plan. This is

33

similar to the qualitative state plans used in this thesis, which can be seen as an ex-

tension of RMTPNs to more general, hybrid plants, since [63] only dealt with teams

of vehicles, with purely continuous dynamics. The function of the temporal planning

algorithm is then to compute control sequences that lead the vehicles through the

desired locations, as well as a schedule for the plan. The algorithm uses Rapidly

exploring Random Trees (RRTs) [41] that take into account the continuous dynamics

of the vehicles. One limitation of this work is that, due to the randomized nature of

the algorithm, there is no guarantee of optimality of the generated control sequences.

In this thesis, we present a model-based executive that generates control sequences

that are optimal over the considered planning window.

Related work in model-based execution [26] proposed an other approach to ex-

tending TPNs, in order to handle hybrid systems, rather than only discrete systems.

[26] uses the same concept of qualitative state plans as in this thesis. The difference

is that rather than encoding the plant dynamics using piecewise-linear functions, as

described in Section 3.2.3, [26] uses a feedback-linearization technique that transforms

the complex, hybrid plant into a set of much simpler linear systems, which can be

controlled using classical PID controllers. The analogies with this work and our work

are described in more detail in Section 3.5.3. As previously mentioned, [26] uses a

partial evaluation approach similar to the one introduced in Section 2.1.2; this is pos-

sible because the objective function is time-cumulative, and consists of maximizing,

at any point in time, the distance between the plant state and a reference trajectory,

so as to maximize robustness to disturbances.

2.2.2 Hybrid Automata and Qualitative Control

In this section, we describe how related work on hybrid automata and qualitative

control tackled the problem of encoding systems with continuous dynamics, through

the use of models that involve continuous state variables, which evolve following state

equations that depend on the current discrete mode of the plant, or on the current

qualitative operating region. In this thesis, we use a plant model comparable with

these types of hybrid models, which enables our model-based executive to control

34

systems with continuous dynamics.

Hybrid Automata

Previous work in hybrid systems [5, 23] extended the fully discrete models in [66]

to models that are able to describe systems with continuous dynamics that depend

on the modes of the plant’s components. These models are described using hybrid

automata, which extend the automata used in [66] by specifying that the different

modes of a given component correspond to different differential equations, used to

model the continuous dynamics of the plant. Such models are called hybrid, since

they involve both discrete and continuous variables. We describe in more detail the

concept of a hybrid automaton in Section 3.2.4, and we show that the plant model

we use in this thesis is able to represent such hybrid automata.

Qualitative Reasoning and Control

The modeling of hybrid systems has also been tackled in the domain of qualitative

control [35, 36]. In [35], the continuous dynamics of hybrid systems are described

by dynamic equations that vary, depending on the current operating region. This

is very similar to hybrid automata, whose continuous dynamics depend on discrete

modes; however, while a hybrid automaton can only be in a single mode at a time,

the operating regions in [35] describe regions of the state space over which the plant

follows some qualitative behavior, and the operating regions are allowed to overlap.

For a given point in the state space, a fuzzy set membership function is used in

order to determine in which operating regions the point is located, and the dynamic

equations at that point are computed by doing a weighted average of the dynamic

equations associated with each operating region. In this thesis, we do not use this

approach, since we assume that all operating regions are disjoint. Allowing operating

regions to overlap could be an area of future work.

More recently, [37] introduced a framework in which, over each operating region,

the dynamics of the plant are specified using a qualitative description, which only

describes certain aspects of the system, leaving the remaining degrees of freedom

35

available for optimization at a lower level, according to criteria chosen by the de-

signer. This means that, instead of using traditional differential equations to model

the dynamics of the plant, the plant model uses qualitative differential equations

(QDEs), which are a qualitative abstraction of a set of ODEs. This abstraction is

useful in order to elevate the interaction between the human operator, to a level where

the operator can specify desired qualitative regions of the state space that the plant

should remain in or go through. The QDEs in the model are then used to describe

the allowed transitions between such qualitative operating regions. As argued in [53],

describing the desired plant behavior at an abstract, qualitative level delegates more

control authority to the autonomous controller, enabling it to robustly react to larger

disturbances.

The work described in this thesis is similar in that we also allow the user to specify

the desired behavior of the plant at an abstract, qualitative level, in the form of a

qualitative state plan. Our work, however, uses traditional ODEs to describe the

dynamics of the plant, rather than QDEs. The use of QDEs would imply that there

be a lower level of control, which would reason on a more accurate, quantitative model

of the dynamics of the plant, in order to generate low-level control sequences. Our

model-based executive was designed to provide this low-level control over the plant;

hence, it requires quantitative models of the plant dynamics, rather than qualitative

models, which would not be sufficient to generate low-level control sequences.

2.3 Model Predictive Control

As mentioned in the introduction to this chapter, the third capability that an au-

tonomous controller for agile, dynamical systems must provide, is robustness to dis-

turbances and unforeseen events. In Section 2.2, we argued that a qualitative descrip-

tion of the goal that the plant must achieve can be used in order to delegate more

control authority to the executive, and give it more room to adapt to disturbances

and unforeseen events. In this section, we show how the executive can take advantage

of this authority in order to perform robust control of the plant. We relate our work

36

to previous work in model predictive control (MPC), which provides a framework for

robust, low-level control of plants with continuous dynamics.

Model predictive control, also called receding horizon control, was first introduced

in the field of Operations Research, in order to perform robust, optimal control of

industrial chemical processes [21, 51, 54]. MPC formulates the problem of generating

optimal control inputs for plants with continuous dynamics, by reasoning over reced-

ing, planning horizons. The controller designs precise, optimal control sequences over

short planning windows, and uses a heuristic to compute an estimate of the cost of

the control sequence beyond the horizon in order to reach a final goal state. This

approach interleaves planning and execution, by reasoning over short planning win-

dows, and replanning regularly, taking into account the latest information about the

environment. This provides robustness to the autonomous controller, while enabling

it to plan into the future in order to design optimal control sequences.

In this thesis, we use a very similar approach, by formulating the problem of gen-

erating optimal control sequences for the plant as a mathematical optimization prob-

lem, which we call receding horizon, Hybrid Model-based Execution (receding horizon

HMEx, Section 3.5.2). Our approach consists of iteratively generating partial control

sequences, by reasoning over short, receding planning windows.

Along with the use of MPC, other work in chemical process control [24, 52]

used Linear Programming (LP) and Mixed Integer Linear Programming (MILP)

approaches [11, 19] in order to encode the problem of generating optimal control

sequences. In these approaches, the constraints in the problem, such as plant dy-

namics, or safe domains of operation, were encoded as linear constraints over a set of

decision variables. LP or MILP optimizers would then be used in order to find op-

timal solutions to the problem. However, the domain of applications of MPC/MILP

methods has long been restricted to plants with slow dynamics, due to the lack of

computational power and efficient algorithms to solve MILPs. Typically, plants such

as industrial chemical plants need model-predictive controllers that reason with time

units on the order of minutes, or even hours. Computational power has dramatically

increased since the eighties, and we now also have much more efficient MILP algo-

37

rithms; as a result, MPC/MILP methods recently became popular again, in order

to control systems with much faster dynamics, for which model-predictive controllers

need to run at frequencies on the order of 1Hz and above. In particular, these meth-

ods have been proved successful for the control of spacecraft [55, 56] and unmanned

aerial vehicles (UAVs) [10, 39, 57].

The method presented in this thesis broadly builds upon this last thread of re-

search, by using a linear programming technique to solve the problem of designing

control sequences for plants with continuous dynamics, and reasoning over a reced-

ing horizon, following the MPC framework. However, our work differs in two main

ways. As previously mentioned, we use a qualitative, model-based approach in which

the plant is controlled through the use of qualitative state plans, that describe a

desired abstract, qualitative plant state evolution with time. This approach allows

for much richer goal specifications, providing flexible temporal synchronization of the

plant. Furthermore, we use a Disjunctive Linear Programming formalism, rather

than MILP, since [42] showed that significant improvements in solution time could

be achieved by using conflict-directed algorithms on DLPs, over traditional MILP

algorithms. We describe in more detail the differences between our approach and [39]

throughout Chapter 4.

In this chapter, we showed how previous work had partially provided the three

main capabilities that are necessary in order to perform autonomous control of ag-

ile, dynamical systems: temporal synchronization, high-level control of continuous

dynamics, and robust adaptation to disturbances. We showed how our approach re-

lated to and built upon this previous work. In the next chapter, we more formally

present the problem that we are trying to solve, and the overall receding horizon

approach that we use to solve it.

38

Chapter 3

Problem Statement

Given a dynamic system (a plant), we define the hybrid model-based execution (HMEx)

problem as the problem consisting of designing an optimal control sequence for the

plant. This control sequence must satisfy the plant model and a given qualitative

state plan, which specifies the desired evolution of the plant state over time, while

minimizing some cost function.

In this chapter, we present a formal definition of the HMEx problem. We first

introduce a simple example of a plant, consisting of multiple fire-fighting UAVs (Sec-

tion 3.1), which we use to illustrate the problem. We then formally define a plant

model (Section 3.2) and a qualitative state plan (Section 3.3). In Section 3.4, we de-

fine the HMEx problem, and we present the general definition of a hybrid model-based

executive. Finally, we present our overall approach to solving the HMEx problem, and

we introduce a corresponding hybrid model-based executive, called Sulu (Section 3.5).

3.1 Multiple-UAV Fire-fighting Example

The multiple-UAV fire-fighting example has a plant that consists of two fixed-wing

UAVs, which evolve in an environment (Fig. 3-1) that has a reported fire. The team

of UAVs is assigned to collectively extinguish the fire, by navigating around forbidden

regions (e.g. no-fly-zones) and by dropping water on the fire. The vehicles must also

take pictures after the fire has been extinguished, in order to assess the damage. A

39

Figure 3-1: Map of the terrain for the fire-fighting example.

natural language description for the mission’s qualitative state plan repeated from

Chapter 1 is:

Aircraft α1 and α2 start at base stations Base 1 and Base 2, respectively.

α1 (a water tanker UAV) must reach the fire region and remain there for

5 to 8 time units, while it drops water over the fire. α2 (a reconnaissance

UAV) must reach the fire region after α1 is done dropping water and must

remain there for 2 to 3 time units, in order to take pictures of the damage.

The overall plan execution must last no longer than 20 time units.

Fig. 3-5 presents a graphical representation for this plan; the formalism and con-

ventions used in this graphical representation will be introduced in Section 3.3.

3.2 Definition of a Plant Model

Recall that the overall motivation for a model-based executive, such as the one we

introduce in this chapter, is to be able to autonomously design low-level control

sequences for a plant, in order to satisfy a high-level qualitative description of the

desired plant state evolution with time. In order to map a desired state evolution to

a sequence of control inputs, the model-based executive reasons on a model of the

plant.

40

3.2.1 Overall Definition of a Plant Model

In the HMEx problem, a fundamental property of the type of plant we are considering

is that it involves continuous dynamics, which must be controlled by sending sequences

of continuous control inputs. Hence, the plant model that an executive reasons on

should include a description of these dynamics, in terms of equations modeling the

plant behavior with time, as a function of the control inputs. The model also includes

constraints on the states that the plant can be in, and on the control inputs that are

allowed; these constraints define the safe operating regions of the plant. This is

defined formally in Def. 1.

Definition 1 A plant model M = 〈s,u,F ,SE〉 consists of a vector s(t) of state

variables, a vector u(t) of input variables, a set F of forbidden regions (Def. 2),

defining unsafe operating conditions, and a set SE of state equations (Def. 3) de-

scribing the plant dynamics. The domain of the vector 〈s,u〉 is called the state space

S = Rn × Rm.

The state vector s(t) is used to describe the state of the plant at time t ∈ R, while

the input vector u(t) stores the values of the control inputs exerted on the plant

during the temporal interval [t, t + 1). As introduced in Chapter 1, under-actuated

plants are plants for which n > m, which means that there are fewer control inputs

than state variables. In our multiple-UAV example, s is the vector of 2-D Cartesian

coordinates of the UAV positions and velocities, and u is the acceleration coordinates

(Eq. (3.1)). Note that this plant is an example of an under-actuated plant, since

(n = 8) > (m = 4).

s = 〈xα1 , yα1 , vα1
x , vα1

y , xα2 , yα2 , vα2
x , vα2

y 〉

u = 〈aα1
x , aα1

y , aα2
x , aα2

y 〉
(3.1)

A fundamental difference between this thesis and previous model-based execu-

tives, such as Titan [66], is that the state variables and input variables we use take on

real values. For Titan [66], plants are modeled by concurrent constraint automata,

each automaton corresponding to a state variable that only takes on a finite number

41

! "#

$%&'(()*! +,-! ./0+'1(-! '2.%3'&1-! 1.&0+4'%&+0! 560+! /-! -&1.3-37! ! 82.%3'&1-! .9! '!

1.&2-:!./0+'1(-! 1'&!/-!2%-;-3!'0! '! 0-(-1+%.&!.9! '!<'4+%16('4! 0%3-!.&!;,%1,! +.!<'00! +,-!

./0+'1(-7!!$.4!%&0+'&1-*!'2.%3%&=!'!0>6'4-!./0+'1(-!1.6(3!/-!'11.5<(%0,-3!/)!<'00%&=!%+!.&!

+,-!&.4+,*!0.6+,*!-'0+*!.4!;-0+7!!?,60!'2.%3%&=!'&!./0+'1(-!%&2.(2-0!+,-!decision +.!0-(-1+!'!

<'4+%16('4! choice .9! 3%4-1+%.&@! +,%0! ('&=6'=-! %5<(%-0! +,'+! ./0+'1(-0! 1'&! /-! &'+64'(()!

4-<4-0-&+-3! '0! (.=%1'(! 3-1%0%.&0! %&! '&! ABCD7! ! ?.! 14-'+-! +,%0! 4-<4-0-&+'+%.&! 9.4! '&!

'4/%+4'4)! 1.&2-:! ./0+'1(-*! +,-! .6+0%3-! /.6&3'4%-0! .9! +,-! ./0+'1(-! '4-! (%&-'4%E-3! '&3! '&!

%&->6'(%+)! 1.&0+4'%&+! %0! %&+4.361-3! +.! 3-014%/-! -'1,! (%&-'4! 0-=5-&+7! ! ?,-! 1('60-! +,'+!

1.&0%0+0!.9!'!3%0F6&1+%.&!.9!-'1,!%&->6'(%+)!1.&0+4'%&+!+,-4-9.4-!3-9%&-0!'!/.6&3'4)!+,'+!%0!

->6%2'(-&+!+.!+,-!./0+'1(-7!

!
"#$

"!$

!
"#$

!
"#%

!
"#&

"%$"%$

!
'#$

!
'#%

!
'#&

!
"#$

"!$

!
"#$

!
"#%

!
"#&

"%$"%$

!
'#$

!
'#%

!
'#&

!

Figure 36: G((60+4'+%.&!.9!+,-!1.&2-40%.&!.9!'!&.&H1.&2-:!./0+'1(-*!I8J*!%&+.!+;.!1.&2-:!./0+'1(-0*!IKJ!'&3!

ICJ*!;,%1,!'4-!+,-&!(%&-'4%E-37!

!

?,%0!%3-'!;'0!'<<(%-3!+.!0%5<(-!0>6'4-!./F-1+0!%&!$%=64-!LM!%&!C,'<+-4!M7!!$.4!'&!

-:'5<(-!.9! +,%0!<4.1-00!9.4!'&!'4/%+4'4)!./F-1+*!1.&0%3-4!$%=64-!#N7! !A-4-!'!&.&H1.&2-:!

./0+'1(-*!I8J*!%0!9%40+!0<(%+!%&+.!+;.!1.&2-:!./0+'1(-0*!IKJ!'&3!ICJ7!!?,-!/.6&3'4%-0!.9!-'1,!

.9! +,-0-! ./0+'1(-0! '4-! +,-&! 3%2%3-3! %&+.! 0-=5-&+0! ;,%1,! 1'&! -'1,! /-! (%&-'4%E-3! '&3!

4-<4-0-&+-3! '0! (%&-'4! %&->6'(%+%-0! I!"#$*! !%#$*! -+17J7! ! O:'5<(-0! .9! 0.5-! .9! +,-! 4-06(+'&+!

%&->6'(%+%-0!5%=,+!%&1(63-!

Figure 3-2: Any general, non-convex region (A) can be approximated by a finite union
of linearized, convex regions (B and C). This figure was taken from [34].

of discrete values, corresponding to the discrete states (or modes) that the automaton

can be in. In such a model, transitions between modes are instantaneous, and gov-

erned by guards involving state variables and control variables, which also only take

on a finite number of discrete values. This type of fully-discrete model is not suited to

describe systems with continuous dynamics, in which there are no such instantaneous

transitions between discrete states, but rather a continuum of transitions between

continuous states, where the transitions are governed by continuous input variables.

Fully-discrete models and fully-continuous models are two ends of a spectrum.

Between these two ends are hybrid models, used to represent plants whose state is

described by a combination of discrete and continuous variables. Although we define

our model using only continuous state variables, the formalism we use is not restricted

to fully-continuous plants; in Section 3.2.4 we describe how it can be used to model

hybrid systems expressed in terms of hybrid automata.

3.2.2 Definition of a Forbidden Region

Recall (Section 3.2.1) that the models we use to describe the plant involve forbidden

regions, describing disallowed operating regions in the plant state space S. In this

section, we formally define the concept of a forbidden region (Def. 2).

42

28

2. Approach

!

xR
W
,yR

N

!

xR
E
,yR

N

!

xR
W
,yR

S

!

xR
E
,yR

S

x

y

Figure 3-3: Example of a forbidden region PS in the UAV fire-fighting scenario.

Definition 2 A forbidden region from the set F is defined as a polyhedron PS in

the state space S [11], specifying a disallowed operating region in the plant state space

(Eq. (3.2), where I is a finite set of integer indexes).

PS =

{
x ∈ S

∧
i∈I

aT
i x ≤ bi

}
(3.2)

This definition of a forbidden region as a polyhedron is based on two assumptions:

that the forbidden regions are convex, and that they are linear. The convexity as-

sumption is motivated by the fact that any non-convex region can be approximated

by a finite union of convex regions. The linearity assumption can be achieved by

linearizing the borders of the regions (Fig. 3-2).

A simple example of a forbidden region in the fire-fighting UAV scenario is a

no-fly-zone that the UAVs must avoid (Fig. 3-3 and Eq. (3.3), for UAV αi). Other

examples of forbidden regions in the multiple-UAV scenario are the bounds on nominal

velocities and accelerations; these are presented in detail in Section 4.2.1. Forbidden

regions may also be defined over both state variables and input variables; this enables

us to define unsafe regions of the form “The acceleration of a UAV should not exceed

some safety value when the UAV is close to a mountain by a certain distance.”

PS =

〈s,u〉 ∈ S
yαi ≤ yN

R ∧ xαi ≤ xE
R

∧ −yαi ≤ −yS
R ∧ −xαi ≤ −xW

R

 (3.3)

43

3.2.3 Definition of a State Equation

As introduced in Def. 1, a plant model describes the dynamics of the plant through

a set SE of state equations, which model the evolution of the state vector s(t) as

a function of time and of the input vector u(t). In this section, we formally define

a state equation (Def. 3), and we illustrate the definition using our multiple-UAV

fire-fighting example.

General Case

Def. 3 introduces the definition of a state equation, in the general case.

Definition 3 Given a time discretization 〈t0, t1, . . .〉 ∈ RN, a state equation in SE

is a piecewise-linear relation, expressing the value of a state variable sk, at all time

steps ti, as a function of s and u, at time step ti−1. This is presented in Eq. (3.4),

where fk : S 7→ R is a piecewise-linear function.

∀ti, sk(ti) = fk(s(ti−1),u(ti−1)) (3.4)

The set of state equations SE can also be written in a compact form, presented

in Eq. (3.5), where F = 〈f1, . . . , fn〉 is the vector function whose coordinates are the

scalar piecewise-linear functions fk.

∀ti s(ti) = F(s(ti−1),u(ti−1)) (3.5)

We define a general piecewise-linear function over the state space S as a function

for which there exists a finite partition S of S into subsets Sj, such that the function

is linear over each of the subsets (Def. 4). We motivate the choice of a piecewise-

linear representation of the plant dynamics by the fact that it enables us to model

approximately any type of regular continuous plant dynamics, by locally linearizing

the physical laws of the plant. More generally, any regular function over S can be

approximated by a piecewise-linear function. Following the same argument as for

the forbidden regions in F (Section 3.2.2), we can assume that the subsets Sj are

44

polyhedra PS of S.

Definition 4 A function f : S 7→ R is piecewise-linear if there exists a partition

Sf of S such that, for all Sj ∈ Sf , the restriction f|Sj
: Sj 7→ R of f on Sj is linear.

Sf is called an underlying partition of f .

The following is an intuitive explanation for Eq. (3.5). Consider a partition SF

that is an underlying partition for the piecewise-linear function F. Then Eq. (3.5)

can be rewritten as in Eq. (3.6), where the functions F|Sj
are linear. We provide an

example in the fire-fighting UAV domain at the end of this section.

∀ti ∀j 〈s,u〉(ti−1) ∈ Sj ⇒ s(ti) = F|Sj
(s(ti−1),u(ti−1)) (3.6)

Note that in Eq. (3.4) and (3.5), we explicitly assume that the dynamic equations

are time-invariant, namely, that F does not depend on ti. We make this assumption

in order to simplify the equations presented in this thesis; however, it can easily be

relaxed by replacing Eq. (3.5) with Eq. (3.7), without fundamentally altering the

methods and algorithms presented in the subsequent chapters.

∀ti, s(ti) = Fti(s(ti−1),u(ti−1)) (3.7)

Finally, in order for Eq. (3.5) to be a reasonable approximation of the plant

dynamics, the time discretization must be sufficiently fine-grained. In particular, in

the case of a regular time discretization ti = T0 + i ·∆t, the granularity of the time

discretization ∆t must be sufficiently small with respect to the plant dynamics.

Examples of State Equations

Eq. (3.8) presents SE for a single fire-fighting UAV α1, where F is linear, rather

than piecewise-linear, and is represented in matrix format. ∆t defines the granularity

of the time discretization [39]. This can be extended to the multi-UAV case by

expressing F with block matrices whose primitive matrices correspond to each of the

UAVs (Section 4.2.1).

45


xα1

yα1

vα1
x

vα1
y

 (ti) =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 ·


xα1

yα1

vα1
x

vα1
y

 (ti−1) +


∆t2

2 0

0 ∆t2

2

∆t 0

0 ∆t

 ·
 aα1

x

aα1
y

 (ti−1) (3.8)

In the previous example, the state equations we use to model the dynamics of the

UAVs are purely linear, rather than piecewise-linear (Eq. (3.8)). However, to give

a simple example to illustrate Eq. (4.9) in the more general piecewise-linear case,

consider a UAV model in which the x-component of the velocity vx saturates once

it reaches the value vmax
x . This can be expressed by the piecewise-linear relation in

Eq. (3.9), where f is a linear function.

∧
i=1...Nt

 vx(ti−1) ≤ vmax
x ⇒ vx(ti) = f(vx(ti−1), ax(ti−1))

∧ vx(ti−1) > vmax
x ⇒ vx(ti) = vmax

x

 (3.9)

An underlying partition for this piecewise-linear relation is the set of polyhedra

{P1,P2}, where P1 = {x ∈ S vx ≤ vmax
x } and P2 = {x ∈ S vx > vmax

x }. Note that

vx > vmax
x must be replaced by the approximate relation vx ≥ vmax

x for P2 to be a

proper polyhedron.

One can draw a parallel between this piecewise-linear representation of the plant

dynamics, and previous work on hybrid systems [5, 23]. Hybrid systems are systems

whose continuous dynamics depend on discrete modes they can be in. For instance,

in Eq. (3.9), the plant is described by two modes, identified by their respective con-

straints on vx (vx(tk−1) ≤ vmax
x and vx(tk−1) ≥ vmax

x). We describe in more detail

in Section 3.2.4 how our plant modeling formalism can be used to encode hybrid

automata, as defined in [23].

There are also many similarities with previous work in qualitative control [35, 36].

In [35], the plant’s state space is decomposed into a set of qualitative operating regions ;

however, these operating regions do not necessarily form a partition of the state space.

On the contrary, two operating regions are allowed to overlap. Instead of using a strict

46

set membership function for the operating regions, a fuzzy set membership function

is used, and the state equation at a given pair 〈s,u〉 ∈ S is defined as the weighted

average of the purely linear state equations over each operating region, where the

weights are given by the values of the corresponding fuzzy membership functions at

point 〈s,u〉.

3.2.4 Application to Hybrid Automata

In this section, we show how our definition of a plant model can be used to encode

hybrid systems, described as hybrid automata [5, 23]. We illustrate our encoding

using a thermostat example from [23]. Def. 5 is a definition of a hybrid automaton,

adapted from [23].

Definition 5 A hybrid automaton consists of the following components:

• A set X = {σ1, . . . , σn, υ1, . . . , υn′} of real-valued variables, where the vector

σ = 〈σ1, . . . , σn〉 is the vector of state variables, and υ = 〈υ1, . . . , υn′〉 is the

vector of input variables.

• A finite directed multigraph (V, E), where the vertices in V correspond to the

different modes that the plant can be in, and the edges in E correspond to

mode switches, describing possible transitions between modes.

• Invariant conditions, represented by a node labeling function that associates,

to each mode in V , a predicate on X, that is, a set of linear equalities or

inequalities on the state variables, which must be satisfied when the plant is in

that mode.

• Flow conditions, similarly represented by a node labeling function that asso-

ciates, to each mode in V , a first-order ODE on the state vector σ, as a function

of the input vector υ.

• Jump conditions, represented by an edge labeling function that associates, to

each mode switch in E, a predicate on X (or guard) that must be satisfied for

the mode transition to be allowed.

47

4

!

off

˙ x = "0.1x

x >18

!

on

˙ x = 5 " 0.1x

x < 22!

x > 21

!

x <19

Figure 3-4: Thermostat hybrid automaton. [23]

An example of a hybrid automaton is the thermostat automaton in Fig. 3-4. The

continuous state variable x represents the temperature, whose evolution with time

depends on the discrete mode of the thermostat. If the thermostat is off, x evolves

following the flow condition ẋ = −0.1x, and if it is on, the flow condition is ẋ =

5 − 0.1x. The invariant conditions in this hybrid plant specify that the thermostat

may only be off if the temperature is above 18 (x > 18), and on if it is below 22

(x < 22). Finally, the jump conditions specify that the plant may transition from off

to on only if x < 19, and from on to off if x > 21.

To represent a hybrid automaton as a plant (according to Def. 1), we introduce a

mode variable m, whose domain corresponds to the different modes of the automaton.

For instance, for the thermostat automaton, m = 0 corresponds to the plant being

in the off mode, while m = 1 corresponds to the thermostat being on. Note that

this temporarily contradicts our initial assumption (Section 3.2.1), stating that all

variables in the plant model are continuous. We will show in Section 4.2.1 how

we can remove this contradiction, by relaxing the domain of m to R, while using a

underlying partition for the state equations that effectively constrains m to take on

values from a discrete domain.

We then set the input vector u(tk) of the plant to the input vector υ(tk) of the

hybrid automaton, augmented with the mode variable m(tk). The state vector s(tk)

is presented in Eq. (3.10), where σ̃(tk), υ̃(tk) and m̃(tk) store respectively the values

of σ, υ and m at the previous time step tk−1. This is enforced by introducing the

state equation ∀k = 1 . . . Nt 〈σ̃, υ̃, m̃〉(tk) = 〈σ, υ, m〉(tk−1). The reason we augment

the state vector with a history of the values of the state and input variables at the

48

previous time step, is to be able to encode the jump conditions as forbidden regions

in the state space, as we describe in a later paragraph.

s(tk) = 〈σ(tk), σ̃(tk), υ̃(tk), m̃(tk)〉 (3.10)

We then encode the flow conditions as a piecewise-linear state equation, using a

partition S of the state space S that splits S into subsets Si corresponding to the

different allowed values m1 . . . m|V | of the mode variable m, as presented in Eq. (3.11).

Si =
{
〈s,u〉 ∈ S m = mi

}
(3.11)

The intuition behind this partition is presented in Eq. (3.12), for the thermostat

example, where x(tk)−x(tk−1)

∆t
is the time discretization for ẋ(tk−1). Note the similarity

with Eq. (3.9). Note also that in the general case, the flow conditions may not be

purely linear; in that case, we use a sub-partition of S, so that the flow conditions are

linear on each subset Si. This corresponds to piecewise-linearizing the flow conditions.

∧
k=1...Nt

 mk−1 = 0 ⇒ x(tk)−x(tk−1)

∆t
= −0.1x(tk−1)

∧ mk−1 = 1 ⇒ x(tk)−x(tk−1)

∆t
= 5− 0.1x(tk−1)

 (3.12)

We encode invariant conditions as forbidden regions in the state space (Sec-

tion 3.2.2). In the thermostat example, the invariant condition on the off mode

specifies that x > 18 when the plant is in that mode. The corresponding forbid-

den region is the polyhedron PS = {〈s,u〉 ∈ S m = 0 ∧ x ≤ 18}, imposing that the

thermostat is not allowed to be in the off mode (m = 0) when the temperature is

below 18 (x ≤ 18).

Finally, transitions between two modes are also encoded as forbidden regions in

the state space. In the thermostat example, consider the transition from off (m = 0)

to on (m = 1), guarded by the condition x < 19. This transition is represented

by the polyhedron PS = {〈s,u〉 ∈ S m̃ = 0 ∧ m = 1 ∧ x ≥ 19}, which specifies

that a transition from off to on may not happen when the temperature is above 19.

Note that, according to the definition of a hybrid automaton in Def. 5, a guard on a

49

transition specifies whether or not the transition may happen. One could consider a

slightly different model, in which the guard would specify whether or not the transition

must happen; for instance, the guard x < 19 on the transition from off to on would

then specify that this transition must happen every time the thermostat is off and

the temperature is below 19 degrees. This would be encoded using the forbidden

region PS = {〈s,u〉 ∈ S m̃ = 0 ∧ m = 0 ∧ x ≤ 19}, which imposes that the plant

is not allowed to remain in the state m = 0 when x ≤ 19. This means that the

plant must necessarily transition to the only other mode possible, which is m = 1.

If the automaton had more than two modes, we would add one forbidden region

PS = {〈s,u〉 ∈ S m̃ = 0 ∧ m = mi ∧ x ≤ 19} for each mode mi 6= 1, such that

the plant is not allowed to transition to any other mode than m = 1.

3.3 Definition of a Qualitative State Plan

As introduced in Chapters 1 and 2, our approach to the robust, coordinated control

of agile systems is a model-based approach, which elevates the interaction between

the human operator and the plant, to the level where the operator is able to control

the plant by specifying successive desired states the plant should be in, rather than

low-level command sequences that it should execute. Furthermore, these state tra-

jectories are specified at a qualitative level, as a series of feasible regions of the state

space, rather than specific states. This way, the operator can focus on the goals to

achieve, rather than on the means. This is especially important for agile systems with

continuous dynamics, for which manually designing command sequences would be a

very involved process. In addition, this level of abstraction offers the executive much

greater latitude to adapt to disturbances, than specifying a concrete state trajectory.

We allow the human operator, or a high-level planner, to specify the desired

sequences of goal states in a rich, temporally flexible manner, by formulating the

intended plant state evolution in the form of a qualitative state plan. A qualitative

state plan is a temporally flexible plan [17], with activities that specify qualitative

constraints on the state of the plant. The flexibility in the plan, both in terms of time

50

e1 e2 e3 e5
End in [!1 at fire]

!

[6,")

Remain in [!1 at fire]

!

[5,8]

Remain in [!2 at fire]

!

[2,3]

e4

!

[0,")

End in [!2 at fire]

!

[12,") !

[0,")!

[0,20]

Start in [!1 & !2 at base]

Figure 3-5: Qualitative state plan in the fire-fighting example.

constraints and in terms of state constraints, provides sufficient control authority to

the autonomous controller to be able to robustly adapt to high-level disturbances and

unforeseen events, as introduced in Section 1.2.

In this section, we formally define a qualitative state plan, and we illustrate our

definitions with examples from the multiple-UAV fire-fighting scenario in Section 3.1.

3.3.1 Overall Definition of a Qualitative State Plan

Definition 6 A qualitative state plan P = 〈E , C,A, F 〉 specifies a desired evo-

lution of the plant state over time, and is defined by a set E of discrete events, a

set A of activities, imposing constraints on the plant state evolution, a set C of

temporal constraints between events, and an objective function F , which must

be minimized.

We illustrate a qualitative state plan diagrammatically by an acyclic directed

graph in which the discrete events in E are represented by nodes, drawn as circles,

and the activities as arcs with ovals. The qualitative state plan for the multiple-

UAV fire-fighting mission example (Section 3.1) is shown in Fig. 3-5. The mission

description involves five events:

1. The first event corresponds to the start event, at which both UAVs are at their

respective base stations (event e1 in Fig. 3-5).

2. The second event mentioned in the mission corresponds to aircraft α1 reaching

the fire, and starting to extinguish it (event e2).

51

3. Event e3 in Fig. 3-5 is associated with the time instant when α1 has just finished

extinguishing the fire.

4. Similar to event e2, event e4 happens when aircraft α2 reaches the fire region

and starts taking pictures of the damage.

5. Finally, the last event mentioned in the mission is the end event, at which α2

has just finished taking pictures, and the mission is complete (event e5).

3.3.2 Definition of a Schedule

As mentioned before, a fundamental feature of qualitative state plans is that they are

temporally flexible plans, that is, the times at which each event in the plan must be

executed are specified in a flexible manner, rather than strictly scheduled beforehand.

As will be presented in Section 3.3.4, this means that temporal constraints between

two events are specified by lower and upper bounds in the duration between the two

events, rather than by a fixed imposed duration. This motivates the definition of a

schedule for a qualitative state plan P .

Definition 7 A schedule T for a qualitative state plan P is an assignment T :

E 7→ R of execution times to all the events in P .

Note that this is the same definition as that of a schedule for simple temporal

networks [17]. Not all schedules are valid for a given qualitative state plan P ; we will

later introduce a criterion for schedule validity (Def. 13). An important point here is

that, although in Section 3.2 we used a time discretization 〈t0, t1, . . .〉 to express the

dynamics of the plant, here a schedule is not restricted to take on values from this

time discretization; as mentioned in Def. 7, it can take on any real values.

3.3.3 Definition of an Activity

Def. 6 defined a qualitative state plan P as a tuple P = 〈E , C,A〉, where A is a

set of activities that describe the desired evolution of the plant state throughout the

52

execution of the state plan. In this sectoin, we formally define an activity, in terms

of a time interval that imposes a given state constraint on the plant.

Definition 8 An activity a = 〈eS, eE, cS〉 has an associated start event eS and an

end event eE. cS is called a state constraint on the variable 〈s,u〉, and can take

on one of the following four forms, where RS, RE, R∀ and R∃ are regions of the state

space S, and T is a schedule for P :

1. Start in state region RS: 〈s,u〉(T (eS)) ∈ RS;

2. End in state region RE: 〈s,u〉(T (eE)) ∈ RE;

3. Remain in state region R∀: ∀t ∈ [T (eS), T (eE)], 〈s,u〉(t) ∈ R∀;

4. Go through state region R∃: ∃t ∈ [T (eS), T (eE)], 〈s,u〉(t) ∈ R∃.

As can be seen in Def. 8, there are two main types of state constraints in a

qualitative state plan: durative state constraints (remain in) and instantaneous state

constraints (start in, end in and go through). We will show in Section 4.2.2 that all

instantaneous state constraints can be expressed using an end in activity, such that

we can only consider remain in and end in activities, without loss of expressivity.

In Fig. 3-5, activities are represented by ovals between two events. An example

of a Remain in state region R∀ activity is the one between events e2 and e3, which

specifies that the plant should remain in the state where α1 is in the fire region.

An example of an End in state region RE is the activity between events e1 and e2,

specifying that the plant should follow a state evolution such that α1 is in the fire

region at event e2. An additional example of an activity is one specifying that vehicle

α1 should remain in a state where its velocity is limited by a small maximum value

between events e2 and e3, while it is dropping water on the fire.

The concept of a state activity, which specify a state constraint on the plant,

differs from previous work in hierarchical temporal planning [32] and classical STRIPS

planning [18], in that the basic element in the plan is not a command or a control

sequence that the plant must execute, but rather a qualitative description of the

53

desired state of the plant, regardless of the control sequences that are used to achieve

that state. Planners like Europa and HSTS incorporate state activities, but these are

not qualitative, and the planner does not deduce the mapping from states to control

actions from a model of the plant. As mentioned before, we use qualitative state

plans to encode a goal specification for the plant, rather than the means to reach

that goal. This allows the human operator or a mission-level planner to interact with

the plant at a higher level, and gives more flexibility to the model-based executive to

design low-level control sequences to achieve the qualitative high-level plan.

This flexibility in the goal specification is desirable for three reasons; first, it gives

the executive more opportunities to succeed, by defining a wider set of feasible op-

tions, described in an abstract, qualitative manner. Second, it delegates more control

authority to the executive, providing it with more options to recover from failure.

And third, it also gives the executive more options to achieve greater optimality,

since it has a wider set of feasible options from which to choose an optimal solution.

These three reasons are also the reasons presented in [53], in order to motivate the

use of qualitative control (Section 2.2.2). In [53], the plant is described using a model

that involves qualitative differential equations (QDEs), specifying the dynamics of

the plant at an abstract, qualitative level. The QDEs describe allowed transitions

between qualitative operating regions of the plant’s state space, allowing the human

operator to control the plant by specifying desired abstract, qualitative states the

plant should be in, leaving the task of designing detailed control inputs to the low-

level, autonomous controllers.

3.3.4 Definition of a Temporal Constraint

In a qualitative state plan, activities are composed together in order to describe

valid plant state trajectories over time. This composition is achieved through the

use of temporal constraints (Def. 9). As with the state constraints, these temporal

constraints are also qualitative, in that they are temporally flexible: rather than

specifying hard constraints on the times at which each event must be scheduled,

they specify lower and upper bounds on the duration between pairs of events in the

54

qualitative state plan.

Definition 9 A temporal constraint c = 〈eS, eE, ∆Tmin
eS→eE

, ∆Tmax
eS→eE

〉 is a con-

straint, specifying that the duration from a start event eS to an end event eE be in

the real-valued interval [∆Tmin
eS→eE

, ∆Tmax
eS→eE

] ⊆ [0, +∞].

Temporal constraints are represented diagrammatically by arcs between nodes,

labeled with the time bounds [∆Tmin
eS→eE

, ∆Tmax
eS→eE

]. In the fire-fighting, qualitative

state plan, in Fig. 3-5, an example of a temporal constraint is the one represented by

the arc e1 → e5 labeled with the bounds [0, 20]; this specifies that the time interval

between events e1 and e5 should last longer than 0 time unit and no longer than

20 time units. Note that we allow the upper bound to be infinite; for instance, the

temporal constraint between events e1 and e4 specifies that e4 should be scheduled

at least 12 time units after e1, but effectively specifies no upper bound. In the case

when the lower bound is 0 and the upper bound is infinite, the temporal constraint is

equivalent to a simple precedence constraint, such as the one between events e3 and e4,

specifying that e4 should be scheduled after e3.

Note that this concept of a flexible temporal constraint is the same as the temporal

constraints used in simple temporal networks [17].

3.3.5 Definition of an Objective Function

As introduced in Def. 6, a qualitative state plan describes the desired behavior of the

plant in time, both in terms of state and temporal constraints that must be satisfied,

and in terms of an objective function F that must be minimized. In this section, we

formally define the concept of objective function (Def. 10).

Definition 10 Given sequences S = 〈s(t0), s(t1), . . .〉 and U = 〈u(t0),u(t1), . . .〉 of

state variables and inputs variables, respectively, and given a schedule T for a set of

events E, an objective function F is a piecewise-linear, real-valued function over

S, U and T .

55

Following the same argument as in Section 3.2.3, we can justify the piecewise-

linearity assumption by the fact that any regular function over S, U and T can

be approximated by a piecewise-linear function. An example of an objective func-

tion in the fire-fighting UAV scenario (Eq. (3.1)) is a function that accounts for

the amount of fuel required by the control sequence U = 〈u(t0),u(t1), . . .〉, where

u = 〈aα1
x , aα1

y , aα2
x , aα2

y 〉. This cost function is given in Eq. (3.13).

F (S,U, T) =
∑

k=0,1,...

|aα1
x (tk)| + |aα1

y (tk)| + |aα2
x (tk)| + |aα2

y (tk)| (3.13)

Another example of a simpler objective function is F (S,U, T) = T (eend), which

can be used to minimize total plan execution time, by enforcing that the end event eend

of the qualitative state plan be scheduled as soon as possible. This is the objective

function that we use in the multiple-UAV fire-fighting scenario.

Previous work in multi-vehicle model predictive control [57] tackled the problem of

designing fuel-optimal control sequences for multiple vehicles. Their approach, briefly

introduced in Section 2.3, is similar to ours, but has the key limitation that the goal

specification is limited to a single goal position that each vehicle must reach, using

a minimum amount of fuel. We extend this approach to richer goal specifications in

terms of qualitative state plans, within a model-based framework.

3.3.6 Comparison with Metric Interval Temporal Logic

One can draw a parallel between our definitions of state and temporal constraints,

and metric interval temporal logic (MITL), introduced in [6]. MITL is a logic-based

language to model real-time systems, which uses a dense representation of time. An

MITL-formula is formally defined in Eq. (3.14), where p is a proposition that is

required to be true. UI is the until operator, where I is a time interval of left

bound l(I) and right bound r(I). By definition, φ1 UI φ2 is true at time t if and only

if φ1 is true at time t, and remains true for at least l(I) and at most r(I) time units,

until φ2 becomes true.

56

φ := p ¬φ φ1 ∧ φ2 φ1 UI φ2 (3.14)

The following additional operators can be constructed from Eq. (3.14): the even-

tually operator ♦I , the always operator �I , and the unless operator IW . ♦Iφ means

that φ must eventually be true at some time instant within the time interval I, and

is equivalent to true UI φ. �Iφ means that φ must always be true during the time

interval I, and is equivalent to ¬♦I¬φ. Finally, φ1 IW φ2 means that φ1 must be

true at all times during the time interval I, unless φ2 becomes true before the end

of interval I, in which case φ1 may only be true until φ2 becomes true. φ1 IW φ2 is

equivalent to ¬((¬φ2) UI (¬φ1)).

We can then encode activities from the qualitative state plan as MITL-formulae,

using the previous operators. We illustrate this on two examples: end in and remain

in activities.

• Consider an End in state region RE activity, starting at event eS and end-

ing at event eE, associated with a temporal constraint on events eS and eE

specifying that the duration between the two events should be within a time

interval I. Then, the state constraint on this activity imposes that the MITL-

formula ♦I(〈s,u〉 ∈ RE) be true at time T (eS). This formula means that the

state constraint should eventually be verified at some point within interval I.

• Consider a Remain in state region R∀ activity, starting at event eS and ending

at event eE, associated with a temporal constraint with time interval I. Then,

the state constraint imposes (〈s,u〉 ∈ R∀) UI true at time T (eS), which means

that the state constraint must be enforced until true is enforced, which may

happen during the time interval I.

This completes our definitions for qualitative state plan and plant model ; in the

next section (Section 3.4), we use these to define the model-based execution problem.

57

3.4 Definition of the HMEx Problem

In the introduction to this chapter, we introduced informally the Hybrid Model-based

Execution (HMEx) problem as the problem of designing an optimal control sequence

for a plant with continuous dynamics, that generates a plant state evolution satisfying

a qualitative state plan (Section 3.3). In this section, we formalize this problem, and

define its solution, through a hybrid model-based executive that maps the qualitative

state plan to an optimal control sequence, by reasoning on a model of the plant

(Section 3.2).

3.4.1 Definition of Hybrid Model-based Execution

Def. 11 presents the formal definition of a hybrid model-based executive. As discussed

later in this section, the main innovation of this executive with respect to previous

model-based executives is that it is able to control plants with continuous dynamics,

by reasoning from a model of the plant dynamics, and by designing an optimal,

complete, continuous control sequence, in order to execute the input qualitative state

plan.

Definition 11 Given an initial state s(t0), a plant model M, a qualitative state

plan P , and its corresponding objective function F , the Hybrid Model-based Ex-

ecution (HMEx) problem consists of incrementally generating, for every time

step ti, an optimal control sequence 〈u(t0), . . . ,u(ti)〉, given a sequence of observa-

tions 〈o(t0), . . . ,o(ti)〉. The final resulting control sequence U = 〈u(t0),u(t1), . . .〉

must verify that there exist a state trajectory S = 〈s(t0), s(t1), . . .〉 and a schedule T

for the qualitative state plan P , such that the following propositions hold:

1. The objective function F (S,U, T) (Def. 10) is minimized;

2. The state sequence S is consistent with the sequence of observations O =

〈o(t0),o(t1), . . .〉 and the input sequence U (Section 3.4.2);

3. 〈S,U〉 satisfies the plant model M (Def. 12);

58

13

1. Introduction

Hybrid

Controller

State

Estimator

Plant

State

Observations Optimal Control

Sequence

Plant Model
Qualitative

State Plan

Control Sequence

Hybrid Model-based Executive

Figure 3-6: Block diagram of a hybrid model-based executive.

4. 〈S,U, T 〉 satisfies the qualitative state plan P (Def. 13);

5. 〈S,U, T 〉 is complete (Def. 14).

As illustrated in Fig. 3-6, the HMEx problem can be decomposed into two different

sub-problems:

1. The problem of estimating the current state of the plant, at each point in time,

by reasoning from the plant model, the prior observations from the plant, and

the control inputs previously sent to the plant. This task is accomplished by the

state estimator, and corresponds to Item 3.4.2 in Def. 11: the state estimator

is responsible for enforcing that the state sequence S be consistent with the

observations.

2. The problem of incrementally generating a complete, optimal control sequence

in order to execute the input qualitative state plan, based on the plant model

and on estimates of the state of the plant. This task is performed by the hybrid

controller, and corresponds to Items 1, 3, 4 and 5 in Def. 11.

In the following subsections, we present in more detail each subproblem: state

estimation (Section 3.4.2), and control sequence generation (Section 3.4.3). We also

59

present the definitions for the concepts of consistency, satisfaction and completeness

introduced in Def. 11.

3.4.2 State Estimation

As shown in Fig. 3-6, the function of the state estimator is to provide estimates of the

plant state to the hybrid controller, by reasoning on the plant model, observations

from the plant, and previous control sequences sent to the plant. Hence, the state

estimator performs a mapping from an observation sequence O = 〈o(t1),o(t2), . . .〉

and a control sequence U = 〈u(t0),u(t1), . . .〉, to a maximum likelihood state sequence

S = 〈s(t1), s(t2), . . .〉, given the plant model (Def. 11, Item 2).

In this thesis, we do not provide a solution for the state estimation problem.

In order to enable Sulu to estimate the state of the plant, the definition of a plant

model, presented in Section 3.2, would need to be extended in order to account

for observations. However, related work on hybrid estimation [12, 25] provides a

framework for the state estimator. [12] reasons on a model of the plant, described

using probabilistic, hybrid, concurrent automata (PHCAs), in order to continuously

track the most probable plant state trajectories.

In our work, we abstract away the state estimation problem, by assuming that

the hybrid controller has a unique, non-probabilistic knowledge of the state of the

plant at all times. This is equivalent to making a maximum likelihood assumption,

that is, assuming that the most likely trajectory provided by the state estimator is

the true trajectory. For instance, the hybrid estimator described in [12] continuously

tracks the state of the plant, by maintaining a finite set of trajectory estimates. In

that case, Sulu would only consider the estimate with the highest cumulative density,

and use its mean as the estimate of the plant state.

3.4.3 Control Sequence Generation

As introduced in Section 3.4.1, given estimates of the plant state provided by the

state estimator, the task of the hybrid controller is to iteratively generate a control

60

sequence U, for which there exist a state sequence S and a schedule T , such that:

1. (Item 1 in Def. 11) The control sequence U is optimal, that is, it minimizes the

objective function F (S,U, T) (Def. 10);

2. (Item 3 in Def. 11) The state sequence S is the sequence that the plant follows

when it executes the control sequence U, that is, 〈S,U〉 satisfies the plant

modelM (Def. 12);

3. (Item 4 in Def. 11) The state and input sequences and the schedule satisfy the

qualitative state plan P (Def. 13);

4. (Item 5 in Def. 11) The state and input sequences and the schedule are com-

plete. (Def. 14);

We formally define the three concepts of plant model satisfaction, qualitative state

plan satisfaction and completeness in the following definitions (Def. 12, 13 and 14,

respectively).

Definition 12 (Plant model satisfaction) Given a plant modelM = 〈s,u,SE ,F〉,

we say that a sequence 〈S,U〉 = 〈〈s,u〉(t0), 〈s,u〉(t1), . . .〉 satisfies plant modelM

if the following two propositions hold:

1. 〈S,U〉 satisfies all the state equations in SE (Def. 3 and Eq. (3.5)):

∀k = 1, 2, . . . s(tk) = F(s(tk−1), s(tk−1))

2. 〈s(tk),u(tk)〉 always remains outside of all forbidden regions PS ∈ F :

∀k = 0, 1, . . . ∀PS ∈ F 〈s(tk),u(tk)〉 /∈ PS

Recall (Def. 1) that a plant modelM imposes two types of constraints on the state

and input variables: constraints related to the state equations describing the plant

dynamics, and constraints corresponding to forbidden regions of the state space. As

61

Table 3.1: Example of a temporally consistent schedule T for the qualitative state
plan in Fig. 3-5.

e e1 e2 e3 e4 e5

T (e) 0 6 12 12 14

defined in Def. 12, a sequence 〈S,U〉 of state and input variables satisfies the plant

model if it satisfies these two types of constraints, at all time steps in the sequence.

Definition 13 (Qualitative state plan satisfaction) Given a qualitative state

plan P = 〈E , C,A, F 〉, a state sequence S, an input sequence U, and a schedule T , we

say that 〈S,U, T 〉 satisfies qualitative state plan P if the following two proposi-

tions hold:

1. The schedule T is temporally consistent, that is, T satisfies all the temporal

constraints in C, as defined in Def. 9;

2. 〈S,U, T 〉 does not violate any of the activities in A, where the concept of ac-

tivity violation is defined as the opposite of activity satisfaction (Def. 8).

Intuitively, a tuple 〈S,U, T 〉 satisfies qualitative state plan P if it is consistent

both with the state constraints imposed by the activities, and with the temporal

constraints between these activities.

Consider the example qualitative state plan in Fig. 3-5. An example of a tem-

porally consistent schedule for this plan is presented in Table 3.1. This schedule is

one that minimizes total plan execution time; however, it does not correspond to any

tuple 〈S,U, T 〉 satisfying all the activities in the qualitative state plan, as will be

illustrated in Section 6.2.

Note that the concept of temporal consistency for a schedule relates directly to

that of temporal consistency for simple temporal networks [17]: a simple temporal

network is said to be temporally consistent if it possesses a schedule that satisfies all

the simple temporal constraints in the network.

62

Definition 14 (Completeness) A tuple 〈S,U, T 〉 is complete if and only if the

spans of the state sequence S and input sequence U cover the whole schedule T

(Eq. (3.15)), where the span of a sequence X = 〈x(tX0), . . . ,x(tXNX
)〉 is defined as the

time interval [tX0 , tXNX
]. An incomplete tuple 〈S,U, T 〉 is said to be partial.

 tS0 ≤ mine∈E(T (e)) ≤ maxe∈E(T (e)) ≤ tSNS

∧ tU0 ≤ mine∈E(T (e)) ≤ maxe∈E(T (e)) ≤ tUNU

 (3.15)

Intuitively, a tuple 〈S,U, T 〉 is complete if and only if both the state sequence S

and input sequence U start at or before the time T (estart) at which the start event estart

of the qualitative state plan is scheduled, and end at or after the time T (eend) at which

the end event eend is scheduled. This way, the two sequences cover the complete

qualitative state plan execution.

For instance, consider the example schedule T presented in Table 3.1, for which

T (estart) = T (e1) = 0 and T (eend) = T (e5) = 14. Consider also a state sequence

S = 〈s(tS0), . . . , s(tSNS
)〉, and an input sequence U = 〈u(tU0), . . . ,u(tUNU

)〉. Then the

tuple 〈S,U, T 〉 is complete if and only if Eq. (3.16) holds.

 tS0 ≤ 0 ≤ 14 ≤ tSNS

∧ tU0 ≤ 0 ≤ 14 ≤ tUNS

 (3.16)

3.4.4 Comparison with Previous Work

The concept of a model-based executive, as illustrated in Fig. 3-6, is similar to previ-

ous model-based executives, such as Titan [66]. As presented in Section 2.2.1, Titan

consists of a Mode Estimation component (ME), and a Mode Reconfiguration compo-

nent (MR). Similar to our state estimator, the function of ME is to provide estimates

of the state of the plant, from observations and from the history of commands pre-

viously sent to the plant. The function of MR is analogous to that of our hybrid

controller, in that it designs command sequences to be sent to the plant, in order to

reach a provided goal state. Both components use a plant model to map observations

to plant states, and abstract goal states to low-level commands.

63

However, as suggested by the names of ME and MR, Titan reasons on modes

that the plant can be in, where a mode is one of a finite number of discrete states,

described in the plant model. The commands sent to the plant are discrete commands

that incur instantaneous transitions between modes. In contrast, we control plants

with continuous dynamics, whose states are described by continuous variables, and

which require sequences of continuous control inputs.

The second fundamental difference with Titan is in the input goal specification.

While Titan takes as an input a single goal state and must design a command sequence

such that the plant reaches that goal state, our hybrid model-based executive accepts

a much richer goal specification, in terms of a qualitative state plan. The role of the

executive is then to design a sequence of continuous control inputs, in order to follow

the desired plant state evolution, within the temporal constraints of the state plan.

3.5 Overall Approach to Solving HMEx

Previous model-based executives, such as Titan [66], focus on reactively controlling

discrete-event systems. This approach is not applicable to temporal plan execution

of systems with continuous dynamics; our model-based executive, called Sulu, uses a

different approach (presented in Section 3.5.2) that consists of continuously planning

into the future, in order to perform optimal, safe execution of temporal plans.

One simple approach to planning into the future consists of starting from a known

initial position (provided by the state estimator), and generating a complete, optimal

control sequence that will lead the plant through a complete sequence of states that

satisfies the qualitative state plan. We call this approach infinite horizon HMEx, and

we present it in Section 3.5.1.

However, solving the whole HMEx problem over an infinite horizon presents two

major challenges. First, the problem is intractable in the case of long-duration mis-

sions. Second, it requires perfect knowledge of the qualitative state plan and the

environment beforehand; this assumption does not always hold in real-life applica-

tions, such as our fire-fighting scenario, in which the size and shape of the fire area

64

might precisely be known only at a late time during the execution of the mission

(Section 1.4). Furthermore, the executive must be able to compensate on-the-fly for

possible approximations or errors in the plant model. Section 3.5.2 presents how we

use a Receding Horizon framework (introduced in Section 2.3) in order to provide

this real-time adaptation functionality, and also to make the problem tractable.

3.5.1 Infinite Horizon HMEx

In Section 3.4, we defined the HMEx problem as the problem of designing an optimal

control sequence that drives the plant through a sequence of states satisfying the

desired plant state evolution specified in the qualitative state plan. In the infinite

horizon version of this problem, the model-based executive generates a complete

control sequence over a quasi-infinite horizon, in an offline phase, and then sends the

control sequence to the plant for execution. In this context, the planning horizon

corresponds to the span of the generated state and input sequences, and is assumed

to be sufficiently long to produce a complete, optimal control sequence that satisfies

the qualitative state plan.

As suggested in the introduction of this chapter, and as argued in [57] in the

similar context of multi-vehicle path planning, solving infinite horizon HMEx raises

a few important issues. First, in the case of long-duration missions, the model-based

executive needs to design control sequences over a planning horizon that is sufficiently

long, for the generated plant state sequences to be complete. Since the qualitative

state plan is temporally flexible, it is not possible to know beforehand how long it

will take to complete it. In this case, we need to adopt a conservative approach, by

choosing a very large planning horizon. This results in significant computational costs

that tend to make the infinite horizon HMEx intractable. A less conservative approach

would consist of choosing a reasonably small planning horizon, and augmenting it

iteratively if the model-based executive discovers that it is too short to complete

the qualitative state plan, or that the best solution found with this small planning

horizon is sub-optimal. This approach, however, can also be very computationally

intensive, if it takes several iterations to find a planning horizon that is sufficiently

65

long to generate complete, optimal sequences.

Furthermore, the infinite horizon approach lacks robustness, since it involves com-

puting a potentially very long control sequence, and then blindly executing it, as-

suming that the plant follows the computed state trajectory. In practice, there are

numerous causes that could prevent the plant from following that trajectory. This

includes unforeseen forbidden regions in the state space that could make the planned

trajectory infeasible, or disturbances that could make the plant deviate from its tra-

jectory. There could also be errors or approximations in the plant model used to

compute the control sequences, in which case the plant would not follow exactly the

planned state trajectory.

The above reasons motivate the use of an approach to solving HMEx that in-

terleaves planning and execution over short horizons. Planning over short horizons

makes HMEx more tractable, and continuous replanning provides robustness to dis-

turbances. We refer to this approach as receding horizon HMEx, which is presented

in the next section.

This approach is very similar to related work described in Section 2.3, which ap-

plies receding horizon control to plants with continuous dynamics, such as industrial

chemical plants [21, 24, 51, 52, 54], or teams of UAVs [10, 39, 57]. The most im-

portant distinguishing feature with respect this work is that we use receding horizon

control in the context of the execution of a qualitative state plan, which is a much

richer description of the goal that the plant must accomplish than the ones used in

previous work. By describing the desired plant state evolution in an abstract, quali-

tative manner, our approach also delegates more control authority to the autonomous

controller to adapt to disturbances and unforeseen events, as argued in Section 3.3.

3.5.2 Receding Horizon HMEx

As introduced in Section 3.5.1, full horizon HMEx has limited applicability, since it

can quickly become intractable, and is not able to adapt to disturbances. In this

section, we present a similar approach, based on model predictive control, that makes

the problem more tractable, and provides robustness to disturbances.

66

Model predictive control (MPC, Section 2.3), also called receding horizon control, is

a method introduced in the field of Operations Research, in order to control industrial

chemical plants [21, 24, 51, 52, 54]. It was recently successfully applied to the low-

level control of spacecraft [55, 56] and teams of UAVs [10, 39, 57]. MPC solves the

control problem up to a limited planning horizon, and re-solves it when the plant

reaches a shorter execution horizon. This method makes the problem tractable by

restricting control sequence generation to a small planning window, and generates

control sequences that are optimal over the planning window, and globally near-

optimal.

In this section, we extend MPC to model-based execution of temporal plans for

hybrid systems, by describing our receding horizon, hybrid, model-based executive,

called Sulu. We formally define receding horizon HMEx as follows.

Definition 15 Let Nt ∈ [0,∞) be the planning horizon, and nt ∈ (0, Nt] be the

execution horizon. We use single-stage, limited horizon HMEx at time t0

to refer to the problem of designing a partial control sequence 〈u(t0), . . . ,u(tNt−1)〉,

given:

1. A plant model M;

2. A known plant state s(t−2nt);

3. A history of observations for the plant 〈o(t−2nt), . . . ,o(t−nt)〉;

4. A history of control inputs 〈u(t−2nt), . . . ,u(t−nt−1)〉 that have already been exe-

cuted by the plant, and the control sequence 〈u(t−nt), . . . ,u(t−1)〉 that the plant

is currently executing;

5. A qualitative state plan P , and a history τ = {〈ei, Tei
〉 Tei

< t0} of events in

the qualitative state plan that are scheduled before t0;

such that there exist a partial state trajectory 〈s(t−2nt), . . . , s(tNt)〉 and a schedule T

satisfying:

1. The objective function F (〈s(t0), . . . , s(tNt)〉, 〈u(t0), . . . ,u(tNt−1)〉, T) is minimized;

67

5

!

t"2n
t

!

t"n
t

!

t
0

!

t
n
t

!

t
N
t

last sequence

executed

sequence being

executed

next sequence

to be executed

planning window

Figure 3-7: Timeline illustrating the single-stage, limited horizon HMEx problem at
time t0 (Def. 15).

2. The state sequence 〈s(t−2nt), . . . , s(t−nt)〉 is a maximum likelihood trajectory

estimate for the sequence of observations 〈o(t−2nt), . . . ,o(t−nt)〉, the input se-

quence 〈u(t−2nt), . . . ,u(t−nt−1)〉, and the plant model;

3. 〈〈s(t−nt), . . . , s(tNt)〉, 〈u(t−nt), . . . ,u(tNt−1)〉〉 satisfies the plant model M;

4. 〈〈s(t0), . . . , s(tNt)〉, 〈u(t0), . . . ,u(tNt−1)〉, T 〉 satisfies the qualitative state plan P ;

5. The times at which past events are scheduled remain unchanged, that is:

∀〈ei, Tei
〉 ∈ τ T (ei) = Tei

Definition 16 Given a plant model M, a qualitative state plan P , a sequence of

observations 〈o(T0), . . .〉, and an initial state s(T0), receding horizon HMEx is the

problem of iteratively solving single-stage, limited horizon HMEx at successive times

t0 = T0, T0 + nt∆t, T0 + 2nt∆t . . . such that the tuple 〈〈s(T0), . . .〉, 〈u(T0), . . .〉, T 〉 is

complete (Def. 14), where ∆t is the granularity of the time discretization.

Intuitively, the single-stage, limited horizon HMEx problem is the restriction of

the general HMEx problem (Def. 11) over a limited planning window (Fig. 3-7). One

important difference with general HMEx is that, since the spans of the state and

input sequences are now limited, the sequences are no longer required to be complete

(Item 5 in Def. 11), but rather are allowed to be only partial. We also require that

68

6

Hybrid

Controller

State

Estimator

!

ˆ s t
0()

!

u t"n
t

(),K,u t"1()

!

u t"2n
t

(),K,u t"n
t
"1()

!

o t"2n
t

(),K,o t"n
t

()

!

s t"2n
t

()

!

u t
0(),K,u t

N
t
"1()

Plant Model
Qualitative

State Plan

!

"

Figure 3-8: Information flow diagram for the single-stage, limited horizon HMEx
problem at time t0 (Def. 15).

events that have previously been scheduled before t0 remain scheduled at the same

time (Item 5 in Def. 15).

We illustrate Def. 15 in Fig. 3-8. Similar to the general HMEx problem, single-

stage, limited horizon HMEx can be decomposed into two subproblems: state estima-

tion, performed by the state estimator, and control sequence generation, accomplished

by the hybrid controller. The overall goal of receding horizon HMEx is for the hybrid

controller to design a control sequence 〈u(t0), . . . ,u(tNt−1)〉 for the plant, over the

current planning window. To do so, the controller reasons from the plant model M,

the qualitative state plan P , and an initial plant state s(t0). The purpose of the state

estimator is to compute an estimate ŝ(t0) of this initial state.

Recall that, following the receding horizon control framework (Section 2.3), while

the model-based executive, Sulu, is solving single-stage, limited horizon HMEx at

time t0, the plant is executing the partial control sequence 〈u(t−nt), . . . ,u(t−1)〉 com-

puted at the previous iteration (Fig. 3-7). Hence, the state estimator does not have di-

rect access to s(t0), since the time t0 has not been reached yet. In order to compute the

expected value ŝ(t0) of s(t0), the state estimator first computes an estimate ŝ(t−nt) of

the plant state at time t−nt , using the plant model, the previous known state s(t−2nt),

69

23

2. Approach

Plant

Model

Qualitative

State Plan

Control Sequence

Plant

State

Encode as

Disjunctive

LP

Solve up

to limited

horizon

Extract

Control

Sequence

!

ˆ s t
0()

!

u t
0(),K,u t

N
t
"1()

Hybrid Controller

Figure 3-9: Sulu’s receding horizon hybrid controller.

and the history of observations and control inputs received from (respectively, sent

to) the plant during the time interval [t−2nt , t−nt]. It then uses the plant model in

order to forecast an estimate ŝ(t0) of the state that the plant will reach, once it has

finished executing the current control sequence 〈u(t−nt), . . . ,u(t−1)〉.

The architecture for Sulu’s model-based, receding horizon, hybrid controller is

presented in Fig. 3-9. Given an initial plant state ŝ(t0) provided by the state estimator,

the hybrid controller encodes both the plant model and the qualitative state plan as

a mathematical, optimization program, called a Disjunctive Linear Program (DLP,

Section 4.1). This DLP is then solved up to a limited horizon, corresponding to the

planning window [t0, tNt] in Fig. 3-7. The new control sequence 〈u(t0), . . . ,u(tNt−1)〉

is then extracted from the solution to the DLP. As defined in Def. 16, this process

is repeated in order to compute an overall complete control sequence, by shifting the

planning window by nt ·∆t at every iteration.

At every iteration, the hybrid controller gets a new estimate of the plant state

from the state estimator; this allows Sulu to adapt to disturbances and model ap-

proximations that may have caused the plant to follow a trajectory different from

the one that was planned when the corresponding control sequence was generated.

By re-planning every nt · ∆t time units, Sulu is also able to revise the schedule T

computed at the previous iteration, in order to adapt to possible changes in the qual-

70

itative state plan. This was already introduced in Section 1.4, and will be illustrated

in more detail in Section 6.2.

3.5.3 Comparison with Related Work

Other ongoing work in the field of model-based programming addresses HMEx using a

slightly different approach [26]. In order to simplify the problem to make it tractable,

rather than using a receding horizon approach, [26] uses a feedback-linearization

approach that effectively transforms a non-linear, multiple-input, multiple-output

(MIMO) plant, into a set of partially decoupled, linear, single-input, single-output

(SISO) plant abstractions, which are much easier to control than the original plant.

To control each linear SISO abstraction, they use a classical PID controller, whose

gains and set points are determined by the model-based executive, in order to main-

tain synchronization between the different abstractions, and complete the qualitative

state plan, while adapting to disturbances.

The feedback-linearization technique in [26] potentially enables the model-based

executive to control more complex plants than the simple piecewise-linearization

method we use in this thesis. However, their approach relies on the fact that the

SISO abstractions can be almost completely decoupled, and that the only coupling

constraints are temporal constraints from the qualitative state plan, which specify

synchronization requirements between the SISO abstractions. In particular, they as-

sume that any given state constraint in the qualitative state plan can only involve

two state variables, which must correspond to the position and velocity of the plant,

for a particular dimension of motion. For instance, in the case of a bipedal walking

plant [26], a goal region may only involve the position and velocity of one component

of the center of gravity or center of pressure of the biped. This results in a loss of

expressivity, compared to our more general approach, as defined in Def. 8.

On the other hand, the use of automatically generated PID controllers in order

to control the SISO abstractions provides much more reactivity to the model-based

executive. In the approach presented in this thesis, the reaction time of the executive

is equal to the execution horizon, which corresponds to the rate at which the executive

71

replans, taking into account the latest knowledge about the state of the world. In

some applications, such as the simple example of an inverted pendulum, the executive

must be able to react very fast, since the plant is highly unstable and has very fast

dynamics. This would require choosing a very short execution horizon, which would

entail that the performance of the executive would heavily rely on the quality of the

guiding heuristic. Future work could look into first applying the offline, feedback-

linearization technique in [26] to the plant, and using automatically generated PID

controllers for the resulting SISO abstractions; Sulu would then generate gains and

set points for the controllers, rather than directly generate the control inputs for

the plant. Furthermore, Sulu would not require quasi-decoupling between the SISO

abstractions, which is the main assumption that induces a loss of expressivity in the

qualitative state plans in [26].

This approach would be very similar to the approach in [26]; however, in [26],

the model-based executive relies on “tubes”, that is, on pre-computed trajectory

envelopes that the SISO abstractions must remain in. The fact that the tubes are

pre-computed offline makes the executive less robust to high disturbances, and to

higher-level unforeseen events. For instance, if a disturbance occurs that displaces

one of the SISO abstractions out of its tube, then the executive aborts, returning

that the problem is infeasible. Being able to recover from such high disturbances

would require the capability to compute new tubes on the fly, or switch to other pre-

computed tubes, which is mentioned in [26] as future work. This would also enable

changes to the qualitative state plan at execution time, which is currently not allowed.

Sulu’s continuous planning approach would solve this problem, because it would not

rely on pre-computation of tubes in order to control the SISO abstractions. The PID

controllers would provide the resulting model-based executive with high-frequency

reactivity, and robustness to limited, low-level disturbances, while Sulu would enable

it to react in real-time, at a lower frequency, to higher disturbances and high-level

unforeseen events, such as changes in the qualitative state plan. This is a promising

area of future work.

72

In this chapter, we defined the problem we are addressing in this thesis, which we

call Hybrid, Model-based Execution (HMEx, Section 3.4). HMEx is the problem of

generating a control sequence for a plant, given a plant model, and a goal specification,

described in the form of a qualitative state plan. The plant model we use (Section 3.2)

is able to describe plants with continuous dynamics, and can also be used to describe

hybrid systems, whose continuous dynamics depend on discrete modes. We defined

a qualitative state plan (Section 3.3) as a qualitative, flexible description of the goal

that the plant must achieve; this abstract, qualitative description allows us both to

elevate the interaction between the plant and the human operator, and also to give

more control authority to the autonomous controller, in order to adapt to disturbances

and unforeseen events. Finally, we introduced Sulu, a hybrid, model-based executive

that solves HMEx by using a receding horizon approach, which consists of iteratively

reasoning over shifting planning windows (Section 3.5).

73

74

Chapter 4

Encoding the HMEx Problem as a

Disjunctive Linear Program

In this chapter, we present in detail how the plant model and the qualitative state plan

are encoded as a Disjunctive Linear Program (DLP). We first present the high-level

concepts involved, and we compare our approach with previous approaches (Sec-

tion 4.1). We then present the DLP encodings in detail, in the simplified case of

Infinite Horizon HMEx (Section 4.2). We finally introduce the changes that have to

be made to the encodings, in order to solve Receding Horizon HMEx (Section 4.3).

4.1 Overall DLP Approach and Comparison with

Previous Work

Recall (Section 3.5.2) that part of our approach to solving the HMEx problem is

to encode it as a Disjunctive Linear Program (DLP). This involves encoding all the

constraints mentioned in both the plant model and the qualitative state plan, using

the DLP formalism introduced in this section.

75

4.1.1 Motivation

As described in the previous chapter, the HMEx problem is a hybrid decision/control

problem (HDCP) [34]. The decision-making component of the problem comes from

the plant model, which specifies that the plant state is constrained to evolve in a

non-convex state space. For instance, in the UAV no-fly-zone example presented in

Fig. 3-3, the hybrid model-based executive must design trajectories for the UAV that

avoid the no-fly-zone so that, at all times, the UAV is either on top, below, to the right,

or to the left of the no-fly-zone. The optimization part of the problem comes from

the fact that the qualitative state plan defines an objective function (Section 3.3.5)

that the model-based executive must minimize. In the fire-fighting UAV example,

the objective can be to minimize fuel consumption.

In order to encode both the plant model and the qualitative state plan as a single

mathematical program, as described in Section 3.5.2, the mathematical programming

formalism must be able to express the two aspects of the problem: the decision-making

aspect, and the optimization aspect. In this section, we show that the Disjunctive

Linear Programming formalism [9, 34, 42, 43] is able to express these two aspects,

and allows us to encode HMEx as an optimization problem, subject to constraints

described as logical formulae over linear constraints on the variables of the problem.

DLPs can be solved by reformulating them as Mixed-Integer Linear Programs

(MILP), and by using off-the-shelf MILP solvers, such as Ilog CPLEX [2]. Other

work addresses solving DLPs directly [34, 42, 43]. In particular, [42] showed that

one could design a DLP solver that takes advantage of the structure of the DLP, and

use conflict-directed branch-and-bound search techniques that lead to a significant

improvement in solving time, over traditional branch-and-bound MILP approaches,

for which the search tree is much larger. This is an important motivation for using the

DLP formalism in this thesis, rather than MILP. As argued in Section 4.2.1, another

reason for choosing DLP is that it involves encodings that are more natural for a

human to comprehend than MILP.

76

4.1.2 Disjunctive Linear Programming Formalism

As introduced in Fig. 3-9, we solve each single-stage limited horizon HMEx problem

by encoding it as a disjunctive linear program [9, 34, 42, 43], defined in conjunctive

normal form in Definition 17.

Definition 17 A disjunctive linear program (DLP) is an optimization problem

with respect to a linear cost function f over a vector x of decision variables, subject

to linear constraints on x. In conjunctive normal form (CNF), each constraint

is a disjunction of linear inequalities (Eq. (4.1)).

Minimize : f(x)

Subject to :
∧

i(
∨

j gi,j(x) ≤ ci,j)
(4.1)

Any arbitrary propositional logic formula whose propositions are linear inequalities

is reducible to a DLP in conjunctive normal form. Hence, in this thesis, rather

than the formulation in Definition 17, we use a more convenient DLP formulation,

presented in Definition 18.

Definition 18 A disjunctive linear program in propositional form is a DLP in

which the constraints are expressed by a formula in propositional form (Eq. (4.2)),

where Φ(x) is defined in Eq. (4.3).

Minimize : f(x)

Subject to : Φ(x)
(4.2)

Φ(x) := Φ(x) ∧ Φ(x) | Φ(x) ∨ Φ(x) | ¬Φ(x) |

Φ(x)⇒ Φ(x) | Φ(x)⇔ Φ(x) | g(x) ≤ c
(4.3)

4.1.3 HMEx as a DLP

As previously mentioned in Section 3.5.2, we use the DLP formalism to encode both

the plant model and the qualitative state plan. To do so, we encode the vector x of

decision variables of the DLP as follows (Eq. (4.4)).

77

x =
〈
s(t0), . . . s(tNt),u(t0), . . .u(tNt−1), T (e1), . . . T (e|E|)

〉
(4.4)

As presented in Eq. (4.4), the vector x consists of both the plant state and input

variables s(t) and u(t) at each time step t in the planning window, and the time

T (e) at which each event e ∈ E is scheduled. In the case where the objective is to

minimize total plan execution time, the DLP cost function f(x) would simply be

equal to T (eend), where eend is the last event in the qualitative state plan. In the

following sections, we describe in more detail how we encode the objective function

in the general case, and what formula Φ(x) we use to encode the constraints in the

plant model and in the qualitative state plan.

4.1.4 Relation with Previous Work

One can draw some similarities between the approach to encoding and solving HMEx,

as introduced in this section, and previous work in planning. For instance, [44]

encodes temporal planning using the PDDL2.1 framework for durative actions, and

solves the STRIPS problem using a modified version of the Graphplan algorithm.

This new algorithm, called LPGP, uses the layers in the graph in order to capture

points in time at which events occur, rather than the uniform flow of time, as in

traditional Graphplan-based systems. Other work in Satplan [28, 29, 30, 31] encodes

classical STRIPS planning using propositional logic, and uses a SAT solver to solve

the resulting SAT formulae. Similarly, in this thesis, we encode the HMEx temporal

planning and control sequence generation problem as a disjunctive linear program,

which is a combination of propositional logic and linear programming, and we use a

DLP solver to solve the problem.

4.2 Encoding Infinite Horizon HMEx

This section introduces the DLP encodings for the plant model (Section 4.2.1), and

for the qualitative state plan (Section 4.2.2), in the context of Infinite Horizon HMEx.

78

Recall (Section 3.5.1) that the fundamental assumption of Infinite Horizon HMEx is

that the number of time steps Nt in the planning horizon is sufficiently large to cover

the whole plan execution; hence, all activities are scheduled between the initial time

step t0 and the final time step tNt .

4.2.1 Plant Model Encodings

We first present the encodings in the general, domain-independent case; we then illus-

trate how these general encodings apply to the multiple-UAV model, before turning

to qualitative state plan encoding.

Plant Model Encodings in the General Case

Recall (Section 3.2) that a plant model M consists of a set of forbidden regions F

defining disallowed operating regions in the plant’s state space, and a set of state

equations SE , describing the dynamics of the plant. There is also a third type of

constraints, consisting of the constraint specifying an initial value s0 for the plant

state vector s at the first time step t0. In the next paragraphs, we present the DLP

encodings for these three types of model-related constraints.

Forbidden Region Encodings: Forbidden regions are represented by polyhe-

dra PS in the plant’s state space S, as defined in Def. 2 and Eq. (3.2), reported

below (Eq. (4.5), where I is a finite set of integer indexes).

PS =

{
x ∈ S

∧
i∈I

aT
i x ≤ bi

}
(4.5)

Eq. (4.6) presents the DLP encoding for the constraint that the plant state s

and the input vector u remain outside of PS at all times. Intuitively, this encoding

corresponds to the constraint
∧

k=0...Nt
〈s(tk),u(tk)〉 /∈ PS. This requires, for all time

steps tk, that 〈s(tk),u(tk)〉 be outside of the forbidden region.

79

∧
k=0...Nt

 ∨
i=1...nPS

aT
i 〈s(tk),u(tk)〉 ≥ bi

 (4.6)

Examples of such forbidden regions and their corresponding encodings for the

UAV case will be presented later in this section.

State Equation Encodings: In the following paragraphs, we present the DLP

encodings for state equations in the plant model. We first present them in the general

case, and we then give an example.

State Equation Encodings in the General Case: Recall that a state equa-

tion in SE is defined by a piecewise-linear relation expressing, at all time steps tk,

a state variable si as a function of s and u at time step tk−1. This is expressed in

compact form in Eq. (4.7), where F is a piecewise-linear function (Def. 4) over the

plant’s state space S.

∧
k=1...Nt

s(tk) = F(s(tk−1),u(tk−1)) (4.7)

Let S = {Sj ⊂ S} be an underlying partition for F (Def. 4). Then, as introduced

in Section 3.2.3, Eq. (4.7) becomes equivalent to Eq. (4.8). This translates to the

fact that, for all time steps tk, and for all subsets Sj ∈ S, if 〈s,u〉(tk−1) ∈ Sj,

then the piecewise-linear expression F(s(tk−1),u(tk−1)) simplifies to the purely linear

expression F|Sj
(s(tk−1),u(tk−1)), where F|Sj

is the restriction of F to the subset Sj.

∧
k=1...Nt

 ∧
Sj∈S

 〈s,u〉(tk−1) ∈ Sj

⇒ s(tk) = F|Sj
(s(tk−1),u(tk−1))


 (4.8)

Empirical tests using CPLEX (Section 6.3) showed an important gain in solution

time by using the equivalent encoding in Eq. (4.9). The rationale behind this encoding

is the following. For all time steps tk, since S is a partition of S, S covers the whole

state space S, hence, whatever the value of 〈s,u〉(tk−1), there must exist a subset

Sj ∈ S that contains 〈s,u〉(tk−1), and over which F ≡ F|Sj
. The formal proof for the

80

equivalence between Eq. (4.9) and Eq. (4.8) is presented in Appendix A.

∧
k=1...Nt

 ∨
Sj∈S

 〈s,u〉(tk−1) ∈ Sj

∧ s(tk) = F|Sj
(s(tk−1),u(tk−1))


 (4.9)

A key property of Eq. (4.9) is that it is in DLP form, since F|Sj
(s(tk−1),u(tk−1)) is

a linear expression (F is piecewise-linear of underlying partition S), and, following the

argument in Section 3.2.2, we can assume that the subets Sj are polyhedra PS, such

that 〈s(tk−1),u(tk−1)〉 ∈ Sj can be re-written in the linear form given in Eq. (4.10).

∧
l=1...nPS

aT
l 〈s(tk),u(tk)〉 ≤ bl (4.10)

Examples of State Equation Encodings: In Section 3.2.3, we introduced a

very simple example of piecewise-linear state equation, in the case of a UAV model

in which the x-component of the velocity vx saturates once it reaches the value vmax
x

(Eq. (3.9)). Similar to Eq. (4.9), we encode Eq. (3.9) using the DLP formula presented

in Eq. (4.11).

∧
k=1...Nt



 vx(tk−1) ≤ vmax
x

∧ vx(tk) = f(vx(tk−1), ax(tk−1))


∨

 vx(tk−1) ≥ vmax
x + ε

∧ vx(tk) = vmax
x




(4.11)

Another example introduced in Section 3.2.4 involves a thermostat, modeled as a

hybrid automaton. We showed that the state equations for this plant were described

by Eq. (3.12). The corresponding DLP encoding is presented in Eq. (4.12).

∧
k=1...Nt



 mk−1 = 0

∧ x(tk)−x(tk−1)

∆t
= −0.1x(tk−1)


∨

 mk−1 = 1

∧ x(tk)−x(tk−1)

∆t
= 5− 0.1x(tk−1)




(4.12)

Note that, in Section 3.2.4, we argued that, in order to be able to describe the

81

thermostat automaton using the plant model formalism introduced in Section 3.2, we

had to constrain the mode variable m to take on a finite set of discrete values, which

contradicted the definition of a plant model, in which all variables involved were real-

valued variables. Eq. (4.12) allows us to remove this contradiction, by extending the

domain of m to R, since Eq. (4.12) effectively constrains m to take on values only

from the set {0, 1}. Therefore, it is not necessary to explicitly require m to have a

finite, discrete domain.

Initialization Constraint Encoding: This constraint specifies an initial value s0

for the plant state vector s at the first time step t0. The DLP encoding is straight-

forward, and presented in Eq. (4.13).

s(t0) = s0 (4.13)

Plant Model Encodings in the Multiple-UAV Example

In this section, we demonstrate the plant model encodings on the multiple-UAV

example, before turning to the encoding of the qualitative state plan. These example

encodings are adapted from the model introduced in [39].

Recall that the constraints in the plant model are of three types: the constraints

imposed by the forbidden regions in F , those corresponding to the state equations in

SE , and the initialization constraints. In our multiple-UAV example, F includes the

following forbidden regions:

1. No-fly-zones in the x/y subspace of each aircraft;

2. Regions of S in which the velocity of a given aircraft is lower than its minimum

allowed value;

3. Regions of S in which the velocity or the acceleration of a given aircraft is

greater than its maximum allowed value;

4. Unsafe regions of S in which the two aircraft are too close to each other.

82

28

2. Approach

!

xR
W
,yR

N

!

xR
E
,yR

N

!

xR
W
,yR

S

!

xR
E
,yR

S

x

y

Figure 4-1: Rectangular no-fly-zone in the UAV fire-fighting example.

In the following paragraphs, we go through each of these types of forbidden re-

gions, and we give the corresponding DLP encodings. Note that most of these encod-

ings were adapted from [39]; the main difference is that [39] uses a MILP formalism,

rather than a DLP formalism to encode the constraints. The MILP formalism re-

sults in encodings that are arguably less natural for a human to comprehend than

the ones we present in this thesis. More importantly, as mentioned in Section 4.1.2,

efficient conflict-directed branch-and-bound algorithms can be designed in order to

solve DLPs, which take advantage of the structure of the DLP to construct a search

tree that is significantly smaller than MILP search trees, leading to significant im-

provement in solution time and space [34, 42, 43].

No-fly-zone Avoidance [39]: Eq. (4.14) presents the DLP encoding for a for-

bidden region for aircraft αi, when the forbidden region R is a no-fly-zone in the

vehicle’s x/y subspace. To keep this example simple, we assume that R is rectangu-

lar (Fig. 4-1), and is represented by its North-East corner 〈xE
R, yN

R 〉 and South-West

corner 〈xW
R , yS

R〉. In a more general case, when forbidden region R is represented by

a polyhedron PS (Eq. (4.5)), the corresponding encoding is the same as in Eq. (4.6).

It can also be extended to the case when forbidden region R has a more general,

non-convex shape, by approximating R by a finite union of convex regions, and by

linearizing each region (Section 3.2.2).

83

28

2. Approach

DLP Encodings

v
x

v
y

vmin

vmin

v
x

v
y

vmin

vmin

a) b)

Figure 4-2: a) Forbidden region corresponding to values of the velocity smaller than
the minimum allowed value; b) Linearized version of the forbidden region.

∧
k=0...Nt



yαi(tk) ≥ yN
o

∨ xαi(tk) ≥ xE
o

∨ yαi(tk) ≤ yS
o

∨ xαi(tk) ≤ xW
o


(4.14)

Intuitively, Eq. (4.14) specifies that, at every time step tk, aircraft αi should be

either on top, to the right, below, or to the left of the forbidden region. Note that

this encoding assumes that vehicles are modeled by points that have no volume; as

mentioned in [39], safety margins must be added around the no-fly-zones to account

for the vehicles’ actual volume, and also to prevent a trajectory from crossing the

corner of a forbidden region between two time steps. More specifically, we assume

that navigation is taking place in the configuration space [45].

Minimum Velocity [39]: Consider a given aircraft αi; the forbidden region corre-

sponding to values of the velocity smaller than the minimum allowed value vαi
min for αi

is simply a sphere in the vx/vy subspace of αi, centered at 〈0, 0〉, and of radius equal to

the minimum velocity (Fig. 4-2a). In order to encode the forbidden region using the

DLP formalism, we linearize this forbidden region by approximating the sphere with

a regular polyhedron (Fig. 4-2b). In our implementation, we use a dodecahedron.

The DLP constraint can then be encoded using the general encoding in Eq. (4.6).

84

For this special type of regular polyhedron, we use the encoding in Eq. (4.15), for

each aircraft αi (with J = 12 in the case of a dodecahedron). Similar to Eq. (4.14),

this encodes that, at all time steps tk, the velocity vector 〈vαi
x , vαi

y 〉 should be outside

of the polyhedron, with respect to one of its sides (identified by its index j).

∧
k=0...Nt

 ∨
j=1...J

 vαi
x (tk) · cos(2jπ

J
)

+ vαi
y (tk) · sin(2jπ

J
)
≥ vαi

min


 (4.15)

Maximum Velocity and Acceleration [39]: To impose a maximum value on

the velocity and the acceleration of every aircraft αi, we use the same method as

for the minimum velocity in the previous paragraph, but we require that the plant

state remain inside of the polyhedron. The corresponding encodings are presented in

Eq. (4.16) and (4.17).

∧
k=0...Nt

 ∧
j=1...J

 vαi
x (tk) · cos(2jπ

J
)

+ vαi
y (tk) · sin(2jπ

J
)
≤ vαi

max


 (4.16)

∧
k=0...Nt

 ∧
j=1...J

 aαi
x (tk) · cos(2jπ

J
)

+ aαi
y (tk) · sin(2jπ

J
)
≤ aαi

max


 (4.17)

Aircraft Inter-collision Avoidance: Consider two aircraft αi and αj. For a given

position 〈xαi
0 , yαi

0 〉 of aircraft αi, aircraft αj must remain outside of the forbidden

region corresponding to the sphere in the xαj/yαj subspace, centered at 〈xαj , yαj〉 =

〈xαi
0 , yαi

0 〉, and of radius (εαi + εαj) (where εαi is the safety margin to be maintained

around aircraft αi [39]). In much the same way as for the bounds on the velocity and

accelerations, presented in the preceding paragraphs, we linearize this sphere using a

regular polyhedron. In our implementation, we simply use a square.

∧
k=0...Nt



xαj(tk)− xαi(tk) ≥ εαi + εαj

∨ xαi(tk)− xαj(tk) ≥ εαi + εαj

∨ yαj(tk)− yαi(tk) ≥ εαi + εαj

∨ yαi(tk)− yαj(tk) ≥ εαi + εαj


(4.18)

85

The DLP encoding for the corresponding constraint is presented in Eq. (4.18).

Intuitively, it encodes the requirement that for all time steps tk, aircraft αi and αj

must remain distant from each other by at least εαi + εαj , either in the x or in the y

direction.

State Equations: As introduced in Section 3.2.3, all the state equations for a given

aircraft αi can be written in compact form, presented in Eq. (4.19) and (4.20).

∧
k=1...Nt




xαi

yαi

vαi
x

vαi
y

 (tk) = A ·


xαi

yαi

vαi
x

vαi
y

 (tk−1) + B ·

 aαi
x

aαi
y

 (tk−1)


(4.19)

A =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 ; B =


∆t2

2
0

0 ∆t2

2

∆t 0

0 ∆t

 (4.20)

Matrices A and B can then be used to write the DLP encoding for the overall

plant state equation, presented in compact form in Eq. (4.21).

∧
k=1...Nt

s(tk) =

 A 0

0 A

 · s(tk−1) +

 B

B

 · u(tk−1)

 (4.21)

Initialization Constraint: Recall that the initialization constraint is the con-

straint that initializes the value of the state vector s at the initial time step t0. As

presented in Eq. (3.1), in the multi-UAV example, the state vector s consists of the

Cartesian coordinates of the position and the velocity of each UAV. As a result, in

the case of two aircrafts α1 and α2, the general DLP encoding in Eq. (4.13) translates

to Eq. (4.22).

86



xα1(t0) = xα1
0 ∧ yα1(t0) = yα1

0

∧ vα1
x (t0) = (vα1

x)0 ∧ vα1
y (t0) = (vα1

y)0

∧ xα2(t0) = xα2
0 ∧ yα2(t0) = yα2

0

∧ vα2
x (t0) = (vα2

x)0 ∧ vα2
y (t0) = (vα2

y)0


(4.22)

4.2.2 Qualitative State Plan Encodings

The second component of the problem statement to be encoded is the qualitative state

plan. Recall that the qualitative state plan specifies the set of feasible trajectories

that the plant is allowed to traverse. This section presents the qualitative state plan

encodings as a DLP. Recall that the qualitative state plan incorporates two types of

constraints: temporal constraints between events, and state constraints, associated

with activities in the plan. It also incorporates an objective function, which Sulu

must minimize in order to achieve optimality.

Temporal Constraints Between Events

Eq. (4.23) encodes a temporal constraint between two events, eS and eE. For example,

in Fig. 3-5, events e1 and e5 must be distant from each other by at least 0 and at most

20 time units; in that case, Eq. (4.23) becomes T (e5)−T (e1) ≤ 20 ∧ T (e5)−T (e1) ≥ 0. T (eE)− T (eS) ≤ ∆Tmax
eS→eE

∧ T (eE)− T (eS) ≥ ∆Tmin
eS→eE

 (4.23)

State Constraints

Recall (Section 3.3) that activities are of the following types: “Start in state re-

gion RS”, “End in state region RE”, “Remain in state region R∀” and “Go through

state region R∃”. Start in and go through activities are derivable from end in activ-

ities (Fig. 4-3 and 4-4). Hence, we only present the encodings for the two primitive

types remain in and end in. In each case, we assume that the state regions RE and

R∀ are polyhedra (Eq. (4.5)), such that 〈s(t),u(t)〉 ∈ RE and 〈s(t),u(t)〉 ∈ R∀ can

be expressed as DLP constraints, similar to (Eq. (4.6)).

87

16

1. Introduction

Temporally Flexible State Plan

• Start in and Go through activities can be expressed

with End in activities:

e
1

e
2

Start in R

!

["T
min
,"T

max
]

e’
1

e
2

e
1

End in R

!

[0,0]

!

["T
min
,"T

max
]

Figure 4-3: Derivation of a start in activity from an end in activity.

17

1. Introduction

Temporally Flexible State Plan

• Start in and Go through activities can be expressed

with End in activities:

e1 e2
Go through R

!

["T
min
,"T

max
]

e’1 e2e1
End in R

!

["T
min
,"T

max
]

Figure 4-4: Derivation of a go through activity from an end in activity.

88

Remain in activity: Eq. (4.24) presents the encoding for a remain in state R∀

activity between events eS and eE. This imposes 〈s(t),u(t)〉 ∈ R∀ for all time steps

t ∈ [T (eS), T (eE)].

∧
k=0...Nt


 T (eS) ≤ tk

∧ T (eE) ≥ tk

⇒ 〈s(tk),u(tk)〉 ∈ R∀

 (4.24)

Intuitively, this encodes that, for all time steps tk, if the start event eS is scheduled

before tk, and the end event eE is scheduled after tk, then we must enforce that 〈s,u〉

be in the goal region R∀ at time step tk. In the multi-UAV fire-fighting example, the

activity “Remain in state [α1 at fire]” imposes the constraint that α1 must be in the

fire region between e2 and e3, while it is dropping water.

End in activity: Consider an end in activity, imposing 〈s,u〉 ∈ RE at time T (eE),

that is, when event eE is scheduled. The encoding (for infinite horizon HMEx) is

presented in Eq. (4.25), which translates to the fact that there must exist a time

step tk that is ε-close to T (eE) and for which 〈s(t),u(t)〉 ∈ RE. We assume here that

the time discretization is regular, of granularity ∆t (tk+1 = tk + ∆t for all k), such

that the time step tk is required to be ∆t
2

-close to T (eE).

∨
k=0...Nt


T (eE) ≥ tk − ∆t

2

∧ T (eE) ≤ tk + ∆t
2

∧ 〈s(tk),u(tk)〉 ∈ RE

 (4.25)

Intuitively, one would want to encode the constraint 〈s(T (eE)),u(T (eE))〉 ∈ RE.

Recall, however, that T (eE) is allowed to take any real value, while s(t) and u(t)

are only defined for values of t that correspond to one of the time steps tk. For this

reason, we encode that 〈s(tk),u(tk)〉 ∈ RE must be enforced for the time step tk that

is the closest to T (eE).

An example of such an activity in our fire-fighting scenario is the “End in [α2 at

fire]” activity imposing α2 to be in the fire region at event e4.

89

Objective Function Encodings

Recall (Section 3.3.5) that the goal specification for Sulu, described in the form of

a qualitative state plan, involves minimizing a given objective function F (S,U, T),

which is a piecewise-linear function over a state sequence S, an input sequence U

and a schedule T . The intuitive, direct DLP encoding for the objective function

would be to add F (S,U, T) to the DLP cost function. However, the definition of a

disjunctive linear program (Def. 17) requires that the cost function be a purely linear

function of the DLP variables, which is not the case of F (S,U, T) in general, since

F is piecewise-linear. To solve this issue, we introduce a new DLP variable c, which

we add to the DLP cost function, while constraining c to be equal to the value of the

objective function. The resulting encoding is presented in Eq. (4.26), where SF is an

underlying partition for F , in which each of the subsets Sj ∈ SF can be assumed to

be polyhedral. Note the similarity with the encoding for the piecewise-linear state

equations (Eq. 4.9).

Minimize : c

Subject to :
∨

Sj∈SF

 〈S,U, T 〉 ∈ Sj

∧ c = F|Sj
(S,U, T)

 (4.26)

In this section, we presented how we encode both the plant model and the qualita-

tive state plan as a DLP, in the case of infinite horizon HMEx. However, as argued in

Section 3.5.2, the infinite horizon approach to HMEx is not robust, and can quickly

become intractable. To tackle this issue, we introduced another approach, receding

horizon HMEx, that consists of iteratively solving HMEx over small, shifting planning

windows. In the following section, we describe what changes need to be done to the

DLP encodings in order to encode receding horizon HMEx.

90

4.3 Encoding Single-stage Limited Horizon HMEx

In the previous section (Section 4.2), we presented the DLP encodings for the plant

model and the qualitative state plan, in the case of infinite horizon HMEx. Recall

that the fundamental assumption of infinite horizon HMEx is that the number of

time steps Nt considered, is sufficiently large to cover the whole state plan execution;

hence all events in the plan are guaranteed to be scheduled between the first time

step t0 and the last time step tNt .

In receding horizon HMEx, we iteratively solve single-stage limited horizon HMEx

problems, where each problem considers only a small number of time steps; hence,

all events are no longer guaranteed to be scheduled between t0 and tNt . As a con-

sequence, the encoding of end in activities has to be revised, as presented in Sec-

tions 4.3.1 and 4.3.2.

4.3.1 Revised Encoding for End in Activities

Consider an end in activity that imposes 〈s,u〉 ∈ RE at the time T (eE), when event eE

is scheduled. Eq. (4.25) can no longer be used, since the planning window is no longer

guaranteed to cover the whole plan execution. As a result, there might not exist any

time step tk in the planning window that is ∆t
2

-close to T (eE). To handle this, we use

the revised encoding presented in Eq. (4.27).

∨
k=0...Nt


T (eE) ≥ tk − ∆t

2

∧ T (eE) ≤ tk + ∆t
2

∧ 〈s(tk),u(tk)〉 ∈ RE


∨ T (eE) ≤ t0 − ∆t

2

∨ T (eE) ≥ tNt + ∆t
2

(4.27)

Eq. (4.27) translates to the fact that, either there exists a time step tk in the

planning window that is ∆t
2

-close to T (eE) and for which 〈s(tk),u(tk)〉 ∈ RE, or

event eE must be scheduled outside of the current planning window (either before the

91

beginning of the current planning window t0, or beyond the planning horizon tNt).

4.3.2 Guidance Heuristic for End in Activities

Consider an “End in state region RE” activity, starting at event eS and ending at

event eE, and assume that the start event has already been executed (T (eS) ≤ t0).

Assume also that the end event has not been executed yet, and that the goal region RE

is unreachable within the current execution horizon tnt . This means that the end in

activity is currently being executed, and that the plant’s state should be currently

evolving towards RE. However, since RE is unreachable within tnt and eE has not

yet been executed, the only linear constraint that is active in the DLP encoding

(Eq. (4.27)) is the last constraint T (eE) ≥ tNt + ∆t
2

, and none of the constraints

〈s(tk),u(tk)〉 ∈ RE is active. As a result, the plant’s state trajectory is effectively

unconstrained (except by the forbidden regions in the state space): the plant is free to

“go in any direction”, as long as it stays outside of the forbidden regions. In particular,

there is absolutely no guarantee that the plant’s state is currently evolving towards

the goal region RE; it might be “going in the wrong direction”, away from RE.

Proposed Guidance Framework in the General Case

To solve the aforementioned issue, Sulu uses a guidance heuristic, in order to guide the

trajectory towards RE. The heuristic is a function hRE
: S 7→ R that associates, with

any vector 〈s,u〉 ∈ S, an estimate hRE
(s,u) of the “distance” in S, that is “cost to go,”

from 〈s,u〉 to the goal region RE. The value of this heuristic at 〈s(tnt),u(tnt)〉 is then

added to the DLP cost function (Eq. (4.28)); hence, Sulu favors partial trajectories

that end as “close” as possible to RE.

Minimize : hRE
(s(tnt),u(tnt)) (4.28)

However, for Eq. (4.28) to be a valid DLP cost function, hRE
must be linear over

the whole state space S. This is an unacceptable limitation: in many applications

such as the multiple-UAV example, to be a helpful heuristic, hRE
needs to take into

92

account the forbidden regions in S, in order to avoid designing trajectories that lead

the plant into local minima, for example, in the presence of non-convex forbidden

regions. As a result, hRE
can have a complex shape; in this case, it cannot be

appropriately linearized over the complete state space.

To relax this limitation, rather than only considering linear heuristics, we al-

low the heuristic to be piecewise-linear (Def. 4), and we use the same method as

in Section 4.2.2 to add hRE
to the DLP cost function. Let S = {Si ⊂ S} be a fi-

nite underlying partition of hRE
, where we can assume that each Si is a polyhedron

(see Section 4.2.1 for a justification of this assumption). Eq. (4.28) then becomes

Eq. (4.29), where (hRE
)|Si

is the restriction of hRE
to Si, and h is a new DLP vari-

able. Note the similarity with Eq (4.26) in the way we encode piecewise-linearity.

Minimize : h

Subject to :
∨

Si∈S

 〈s(tnt),u(tnt)〉 ∈ Si

∧ h = (hRE
)|Si

(s(tnt),u(tnt))

 (4.29)

As mentioned before, this guidance heuristic only needs to be applied when either

the end in activity is currently being executed, or is scheduled to start in the current

execution window (T (eS) < tnt), and to end beyond the planning horizon (T (eE) ≥

tNt). Hence, we can modify Eq. (4.29) in order for the constraint to be only enforced

when these two conditions are verified (Eq. (4.30)). Note that in Eq. (4.30) we added

the constraint h ≥ 0 in order to prevent the cost function from being unbounded

below, when T (eS) < tnt and T (eE) ≥ tNt . This implies that the guidance heuristic

may only take on non-negative values.

Min : h

S. t. : h ≥ 0 T (eS) < tnt

∧ T (eE) ≥ tnt

⇒ ∨
Si∈S

 〈s(tnt),u(tnt)〉 ∈ Si

∧ h = (hRE
)|Si

(s(tnt),u(tnt))


(4.30)

93

38

2. Approach

!

x
" j

!

y
" j

!

xi
" j ,yi

" j

!

S
i

!

R
E

!

R
E

"

!

h
RE

()
Si

Figure 4-5: Guidance heuristic for an end in activity involving a particular aircraft αj.

A possible intuitive interpretation of Eq. (4.30) is the following. One can think

of S as a discrete “cost map” that contains subgoals Si, for which the cost to go to

the final goal region RE is known, and given by the linear guiding heuristic (hRE
)|Si

.

If the end in activity is scheduled to start within the current planning horizon and

to end beyond (T (eS) < tnt ∧ T (eE) ≥ tnt), then Sulu must choose a subgoal Si that

minimizes the remaining cost to go from 〈s(tnt),u(tnt)〉 ∈ Si to the destination RE.

Guidance Heuristic in the Multiple-UAV Fire-fighting Example

In the fire-fighting example, for an end in activity involving a specific aircraft αj,

S is a partition of S in which each subset Si is a polyhedral cylinder orthogonal to

the xαj/yαj subspace, and whose base in the xαj/yαj subspace is a square centered

at a given position 〈xαj

i , y
αj

i 〉 (Fig. 4-5). For each Si, (hRE
)|Si

is then chosen to be

constant, and equal to an estimate of the time necessary to go from 〈xαj

i , y
αj

i 〉 to the

projection R⊥
E of the goal region RE onto the xαj/yαj subspace. Similar to [10], we

compute (hRE
)|Si

for each i by constructing a visibility graph based on the forbidden

regions in the xαj/yαj subspace. This is illustrated in Fig. 4-6.

As suggested in Fig. 4-6, Eq. (4.30) can be simplified by reducing S to a subset

S̃ ⊂ S that excludes all the regions Si for which the proposition 〈s(tnt),u(tnt)〉 ∈ Si is

94

37

2. Approach

5

6

6

5

6

6

7

8

6

7

10

9

8

9

10

11

10

9

10

11

12

11

10

11

12

13

12

11

12

R
E

S
i

!

y
" j

12 11 10 7

execution horizon

!

x
" j

Figure 4-6: Example of a guidance heuristic for a fire-fighting UAV.

guaranteed to be unsatisfiable. This is the case when Si is inside a forbidden region,

or when Si is unreachable within the current execution horizon. For instance, in

the multiple-UAV example, the maximum velocity constraints allow us to ignore the

regions that are not reachable by the UAVs within the execution horizon, since they

are too far away from the initial position s(t0). This allows us to only consider the

regions Si that are within a limited distance of s(t0), hence, in our implementation,

S only contains about twenty subgoals.

We present in Chapter 5 how the plant model M can allow us to determine, in

the general case, when a region of the state space is unreachable.

Comparison with Previous Work [10]

Our guidance heuristic approach builds upon the guidance framework introduced

in [10]. However, our approach is generic, while the heuristic in [10] is domain-specific,

and does not extend to the general type of plants considered in this thesis. There

are two main differences between the two approaches. First, [10] computes the cost

to go starting from the planning horizon tNt rather than the execution horizon tnt

(Fig. 4-7). The reason we use the execution horizon is to lower the complexity of

Eq. (4.30): for a given size of the subgoals Si, reasoning with the execution horizon,

rather than the planning horizon, yields a lower number of subgoals in the reduced

95

39

2. Approach

R
E

planning horizon

hi

gi

!

xi
" j ,yi

" j

!

x
" j tNt

(),y" j tNt
()

!

x
" j!

y
" j

execution horizon

Figure 4-7: Guidance heuristic used in [10].

cost map S̃, since the plant can reach a larger part of the state space within tNt than

within tnt < tNt .

Second, [10] uses a cost map that consists of subgoal points 〈xαj

i , y
αj

i 〉 for which

an estimate hi of the cost to go to the final goal RE is known; these subgoals are

simply the corners of the forbidden regions in the visibility graph. The value of the

guidance heuristic for a given subgoal 〈xαj

i , y
αj

i 〉 is then chosen equal to the sum of hi

and an estimate gi of the cost to go from 〈xαj(tNt), y
αj(tNt)〉 to 〈xαj

i , y
αj

i 〉 (Fig. 4-7).

gi is computed simply by taking the straight-line Euclidian distance between the two

points. To make sure that this estimate is valid, they only allow their controller to

choose subgoals 〈xαj

i , y
αj

i 〉 that are “visible” from 〈xαj(tNt), y
αj(tNt)〉; the concept of

visibility corresponds to the existence of a straight line from 〈xαj(tNt), y
αj(tNt)〉 to

〈xαj

i , y
αj

i 〉 that does not cross any forbidden region.

The validity of gi relies on the concept of visibility, and on the fact that, in the

case of a fixed-wing UAV, a straight line is effectively the shortest trajectory between

two points that is consistent with the dynamics of the aircraft. This assumption does

not hold in the general case: if the forbidden regions are no longer simply in the x/y

subspace, but include state variables such as velocities and/or accelerations, there is

no concept of visibility, and their method to compute gi falls short. More generally,

a straight-line trajectory might not be consistent with the dynamics of the plant, in

96

1

!

x

!

v
x

xx

!

s t
N
t

()

!

s
E gE

!

x
2

!

x
1

!

v
x

min

!

"v
x

min

Figure 4-8: Simple example showing a limitation of the approach used in [10].

which case the straight-line Euclidian distance might be a very poor heuristic. Our

approach relaxes this assumption, and is applicable in the general case, given that we

have access to a guidance heuristic for the plant.

Consider the example of a 1-D plant whose state vector is s = 〈x, vx〉, where

x is the position, and vx is the velocity. The input is the acceleration, which has

finite lower and upper bounds. Consider the forbidden region presented in Fig. 4-

8, corresponding to a segment [x1, x2] in which the plant is required to maintain

a minimum absolute velocity vmin
x . The guidance heuristic approach in [10] would

consider the goal state sE “visible” from s(tNt), and the heuristic value gE assigned

to sE would be equal to the Euclidian distance from s(tNt) to sE (in this case, hE = 0

since sE is the goal state). However, the straight-line trajectory from s(tNt) to sE is

inconsistent with the plant dynamics, since x can only increase when vx is positive,

and decrease when vx is negative. The shortest feasible trajectory in that case would

be one that goes around the forbidden region. Our approach would build a cost map

of subgoal regions whose cost to go would be the value of the guidance heuristic,

computed, for instance, by running a shortest path algorithm on a discretization of

the state space (Fig. 4-9). This leads to a better guidance heuristic, which is able

to guide the plant around the forbidden region, rather than suggest to go straight

towards the goal state, which is infeasible.

97

2

!

v
x

xx

!

s t
N
t

()

!

s
E

!

x
2

!

x
1

!

v
x

min

!

"v
x

min

5 4 3 4

4

3

3

2

2

1 2

!

x

Figure 4-9: Our guidance heuristic correctly guides the plant around the forbidden
region.

In this chapter, we first presented our overall approach to solving Receding Hori-

zon HMEx, which consists of encoding the plant model and the qualitative state plan

as a mathematical, optimization problem, using a Disjunctive Linear Programming

formalism (Section 4.1). We motivated the use of DLP by the fact that it was suited

to encode the hybrid logic/optimization nature of the HMEx problem. We then pre-

sented in more detail how we use this formalism in order to encode the constraints in

the plant model and in the qualitative state plan, in the case of infinite horizon HMEx

(Section 4.2). We illustrated the encodings using the multiple-UAV fire-fighting ex-

ample introduced in Section 3.1, and the hybrid thermostat automaton presented in

Section 3.2.4. Finally, we showed how the encodings could be modified in order to

solve receding horizon HMEx (Section 4.3). In particular, we introduced a heuristic

that Sulu uses in order to guide the plant towards regions of the state space specified

by end in activities in the qualitative state plan, when these goal regions are not

reachable within the current planning window.

98

Chapter 5

Constraint Pruning Policies

In the preceding chapter, we saw that our receding horizon model-based executive,

Sulu, solves the HMEx problem by encoding it as a DLP, and iteratively solving it

over small planning windows. The ability of Sulu to solve the problem in real-time

is limited by the complexity of the DLP, in terms of the number of variables and the

number of constraints. In the second half of the previous chapter, we presented how,

by limiting the number of time steps Nt in the planning window, we could lower the

number of variables, since every time step ti introduces n + m variables in the DLP,

corresponding to the n components of the state vector s(ti) and the m components

of the input vector u(ti).

In this chapter, we describe a method to further lower the complexity of the DLP,

by lowering the number of constraints. This is done through the use of a set of novel

pruning policies that enable Sulu to prune constraints, without loss of correctness.

5.1 Overall Constraint Pruning Framework

In this section, we formally define a pruning policy as a function that returns whether

or not a constraint in the HMEx problem can be pruned (Def. 19).

Definition 19 A pruning policy is a function p : CHMEx 7→ {true, false} that,

for each constraint c ∈ CHMEx, returns true if c can be pruned, and false if it cannot

99

be pruned. CHMEx is the set of HMEx constraints, where a HMEx constraint is a

constraint introduced either by the plant model or the qualitative state plan (Chap. 3);

the list of all types of HMEx constraints is recalled below:

1. A constraint imposed by the plant model M can be of the following three types:

(a) A constraint imposed by an forbidden region R ∈ F , which constrains the

plant vector 〈s(ti),u(ti)〉 to remain outside of R for all time steps ti in the

planning window;

(b) A constraint corresponding to a state equation si(tk) = fi(s(tk−1),u(tk−1));

(c) The constraint imposing an initial value to s(t0).

2. A constraint imposed by the qualitative state plan P is of two types (one more

type of state plan constraints will be introduced in Section 5.3.1):

(a) A temporal constraint c ∈ C, specifying lower and upper bounds on the time

between two events in the qualitative state plan;

(b) A state constraint cS, associated with a given activity a ∈ A. This last

category includes the guidance constraints introduced in Section 4.3.2.

As will be presented in Chapter 6, the pruning policy is called on all HMEx

constraints at the beginning of each iteration of the receding horizon HMEx algorithm,

in order to incrementally update the DLP. Consider a HMEx constraint c ∈ CHMEx;

if the pruning policy returns p(c) = true, then c can be pruned, which means that

its corresponding DLP encoding can be removed from the DLP (if it was in the

DLP at the previous iteration), or ignored (if it was not in the DLP at the previous

iteration). Similarly, if p(c) = false, then c may influence the solution; therefore,

the DLP encoding for c must be added to the DLP (if it was not in the DLP at

the previous iteration), or updated (if it was previously in the DLP, but it involves

parameters such as t0 or tNt , whose values have changed since the previous iteration).

100

Alg. 1 Constraint pruning policy for the DLP constraint associated with a given
forbidden region PS

1: if R∩ PS = ∅ then
2: return true

3: else
4: return false

5: end if

5.2 Plant Model Constraint Pruning

As mentioned in Def. 19, some of the HMEx constraints are specified by the plant

model M, while others are introduced by the qualitative state plan. In this section,

we present pruning policies for the constraints imposed by the plant model: forbidden

region constraints (Section 5.2.1), state equation constraints (Section 5.2.2), and the

state initialization constraint (Section 5.2.3).

5.2.1 Forbidden Region Constraint Pruning

General Case

Recall that the plant model M defines forbidden regions in the state space S as

polyhedra of S (Eq. (4.5)). The corresponding DLP encoding for a given polyhedron

PS ∈ S was presented in Eq. (4.6), and is repeated in Eq. (5.1).

∧
k=0...Nt

∨
i=1...nPS

aT
i 〈s(tk),u(tk)〉 ≥ bi (5.1)

Eq. (5.1) can be pruned if PS can be guaranteed to be unreachable from the

initial plant state s(t0), within the planning horizon tNt . That is, if the region R of

all states s reachable from s(t0) within tNt is disjoint from PS (Alg. 1). R is formally

defined in Eq. (5.2) to (5.4).

R0 = {s(t0)} (5.2)

101

∀k = 0 . . . Nt − 1, Rk+1 =

sk+1 ∈ Rn

sk+1 = Ask + Buk

∧ sk ∈ Rk

∧ ∀R ∈ F 〈sk,uk〉 /∈ R

 (5.3)

R =
⋃

k=0...Nt

Rk (5.4)

As shown in Eq. (5.3), Rk+1 can be constructed as the set of states sk+1 that are

reachable in one time step from any state sk ∈ Rk, using any input uk that does not

make 〈sk,uk〉 violate any forbidden region R ∈ F .

Consider the simple example of a plant whose state vector is s = 〈x〉, and whose

input vector is u = 〈vx〉, where x and vx are linked by the state equation x(tk) =

x(tk−1)+∆t·vx(tk−1). F consists of two forbidden regions, imposing a lowerbound vmin
x

and an upper bound vmax
x on the velocity vx. If the initial state is x(t0) = 0, then the

set of possible values for x(t1 = t0+∆t) isR1 = [∆t·vmin
x , ∆t·vmax

x]. Iteratively, the set

of reachable states at time step t2 = t1 +∆t from R1 is R2 = [2 ·∆t ·vmin
x , 2 ·∆t ·vmax

x].

Efficient techniques have been developed in order to compute R, such as in [8,

16, 22, 38, 40, 59]. In the following paragraphs, we describe how, for our fire-fighting

UAV example, we use an approximation of R, which can be computed easily.

UAV Example

Recall that, in the UAV example, the forbidden regions considered are the following

(Section 4.2.1):

1. No-fly-zones in the x/y subspace of each aircraft;

2. Regions of S in which the velocity of a given aircraft is lower than its minimum

allowed value;

3. Regions of S in which the velocity or the acceleration of a given aircraft is

greater than its maximum allowed value, and

102

Alg. 2 Constraint pruning policy for collision avoidance between aircraft αi and
no-fly-zone R ∈ F
1: if dist(〈xαi , yαi〉(t0), R) > Nt ·∆t · vmax

αi
then

2: {forbidden region R is out of reach within Nt;}
3: return true

4: else
5: return false

6: end if

4. Unsafe regions of S in which two aircraft are too close to each other.

In this section, we illustrate the pruning policy in Alg. 1 on the forbidden regions

of Type 1 and Type 4. For these two types of forbidden regions, we use a fast, approx-

imate method to compute R: for a given aircraft αi, we approximate its reachability

set R by a 2-sphere R̃ centered at 〈xαi , yαi〉(t0) and of radius Nt · ∆t · vmax
αi

, which

is simply the length of the longest straight-line trajectory that αi can travel within

the planning horizon. Note that, since this is an optimistic approximation (R ⊂ R̃),

it is a sound approximation: it will not lead us to prune forbidden regions that are

reachable within the current planning horizon.

No-fly-zone Avoidance Constraint Pruning: Recall that the DLP constraint

encoding no-fly-zone avoidance is presented in Eq. (4.14), in the simplified example

of a rectangular no-fly-zone. The corresponding pruning policy is presented in Alg. 2,

for a given aircraft αi and a given no-fly-zone R in the xαi/yαi subspace. Similar to

Alg. 1, the constraint can be pruned if R̃ ∩ R = ∅; however, here R̃ is the 2-sphere

centered at 〈xαi , yαi〉(t0) and of radius Nt ·∆t · vmax
αi

, hence R̃ ∩ R = ∅ is equivalent

to dist(〈xαi , yαi〉(t0), R) > Nt ·∆t · vmax
αi

, where dist is the Euclidian distance in the

xαi/yαi subspace.

Vehicle Collision Avoidance Constraints Pruning: Consider the DLP con-

straint encoding collision avoidance between two aircraft αi and αj (Eq. (4.18)). Ef-

fectively, the pruning policy for this constraint (Alg. 3) is a special case of the policy

for no-fly-zones presented in the previous paragraph; here, the no-fly-zone R that air-

103

Alg. 3 Constraint pruning policy for collision avoidance between aircraft αi and αj

1: if ‖〈xαi , yαi〉(t0)− 〈xαj , yαj〉(t0)‖L2 > Nt ·∆t · (vαi
max + v

αj
max) + εαi + εαj then

2: return true

3: else
4: return false

5: end if

craft αi must avoid is the 2-sphere in the xαi/yαi subspace, centered on aircraft αj, and

of radius εαi +εαj (where εαi is the safety margin to be maintained around aircraft αi).

Hence, dist(〈xαi , yαi〉(t0), R) = ‖〈xαi , yαi〉(t0)− 〈xαj , yαj〉(t0)‖L2 − (εαi + εαj).

5.2.2 State Equation Constraint Pruning

As introduced in Section 3.2.3, the dynamics of the plant are modeled by state equa-

tions, which predict the values of the plant variables at every time step ti, from their

values at time step ti−1 and the values of the control inputs at time step ti−1. These

state equations are fundamentally necessary for Sulu to be able to design control

sequences for the plant, by planning into the future; for this reason, state equation

constraints are never pruned (the pruning policy always returns false).

As presented in Section 5.1, this means that the state equation constraints always

remain encoded in the DLP, and that they may have to be updated every time Sulu

shifts the planning window, if they depend on parameters whose values change when

the planning window changes (such as t0 or tNt). This is the case, for instance, when

we remove the assumption that the state equations are time-invariant (Section 3.2.3).

5.2.3 State Initialization Constraint Pruning

Recall (Section 4.2.1) that, for the plant model to be able to properly predict the

behavior of the plant over time, the plant state vector s(t) must be given an initial

value s0 at the first time step t0 in the planning window. As described in Sec-

tion 3.5.2, this initial value is computed by the state estimator, using the last control

sequence U = 〈u(t−nt), . . . ,u(t−1)〉 previously sent to the plant, and using an esti-

mate of the state of the plant at the time t−nt when it starts executing that control

104

Alg. 4 Pruning policy for the state initialization constraint.

1: query the state estimator for the expected value s0 of the plant state at time
step t0

2: return false

sequence U. The value of the initial plant state s0 hence changes every time the

planning window changes; therefore, the DLP encoding for the state initialization

constraint (Eq. 4.13) must be updated at every iteration, when the corresponding

pruning policy is called. This policy is presented in Alg. 4. Note that, similar to the

state equation pruning policy (Section 5.2.2), the policy always returns false, since

the state initialization constraint is a fundamental constraint necessary for Sulu to

be able to plan into the future from a known initial position.

As described in Alg. 4, the policy queries the state estimator for a prediction s0 of

the plant state at time step t0, when it has finished executing the control sequence U.

s0 is the value used to initialize the state variable in Eq. 4.13.

Note that the model used by state estimator in order to compute s0 does not have

to be the same as the plant model used by the hybrid controller, introduced in Sec-

tion 3.2.3. In particular, it does not need to verify the piecewise-linearity assumption,

and it may use a more fine-grained time discretization, if any. The piecewise-linearity

assumption and the time discretization are only necessary to encode the model using

the DLP formalism. Here, the model used by the state estimator may be a better,

non-linear, continuous model of the plant dynamics. Sulu then uses this better model

to compensate for the approximations in the piecewise-linear model used to design

the control sequences.

5.3 Qualitative State Plan Constraint Pruning

Recall that a constraint mentioned in a qualitative state plan P can be either a

temporal constraint between two events, a remain in constraint, an end in constraint,

or a heuristic guidance constraint for a given end in activity. In this section, for each

type, we show that the problem of finding a pruning policy is equivalent to that of

105

[LB, UB]

Activity B

(R=1)

1

P=1 Q=1

2

e
1

e
2

e
1

e
2

a b

!

"T
e1#e2

min
,"T

e1#e2

max[]

!

+"T
e
1
#e

2

max

!

"#T
e
1
$e

2

min

Figure 5-1: Computation of the distance graph: each arc in the qualitative state
plan (a) is split into two arcs in the distance graph (b).

foreseeing if an event in the qualitative state plan could possibly be scheduled within

the current planning horizon. This is solved by computing bounds 〈Tmin
e , Tmax

e 〉 on

T (e), for every event e. Given the execution times of past events, these bounds are

computed from the bounds 〈∆Tmin
〈e,e′〉, ∆Tmax

〈e,e′〉〉 on the distance between any pair of

events 〈e, e′〉, obtained using the method in [17]. This involves running an all-pairs

shortest path algorithm on the distance graph corresponding to the qualitative state

plan (Fig. 5-1), which can be done offline (Chapter 6, Alg. 11).

5.3.1 Temporal Constraint Pruning

Overall Approach

In this section, we describe a temporal constraint pruning policy that effectively

prunes any event in the qualitative state plan that is guaranteed to be scheduled

outside of the current planning window. Any temporal constraint involving such an

event is also pruned. This choice of policy can be motivated by the two following

arguments:

1. If an event is guaranteed to be scheduled before the beginning of the current

planning window t0, this means that the event has already been executed. There

is no need to schedule that event anymore; hence, it can be pruned from the

DLP.

2. If an event is guaranteed to be scheduled beyond the current planning hori-

zon tNt , then we can defer the scheduling of that event to a later time, when it

is no longer guaranteed to be scheduled outside of the current planning window.

106

30

2. Approach

e
1

e
2

e
3

!

[2,3]!

[3,3]

planning

horizon

!

[0,1]

Figure 5-2: Example of an implied temporal constraint.

Hence, such an event can also be pruned from the DLP.

In some domains of applications, however, this pruning policy might not be de-

sirable. For instance, if the human operator needs to know in advance the intentions

of the autonomous system in order to schedule his or her own actions accordingly,

then it might be necessary for Sulu to design complete schedules for the whole quali-

tative state plan, rather than only for parts of the plan that may be scheduled within

the current planning window. In that case, the events and the temporal constraints

should not be pruned. Note that the complete schedules that would then be generated

would not be guaranteed to be unchanging, since Sulu might need to reschedule future

events in order to adapt to disturbances, and to account for the fact that, following

the receding horizon framework, state constraints beyond the planning horizon are

ignored.

Pruning all the temporal constraints that involve an event that is guaranteed to

be scheduled outside of the current planning window, however, can have three bad

consequences.

First, implied temporal constraints between two events that can be scheduled

within the current planning window might no longer be enforced. Implied tempo-

ral constraints are constraints that do not appear explicitly in the qualitative state

plan, but are a logical consequence of several explicit temporal constraints. This is

illustrated in Fig. 5-2. Consider the two temporal constraints e2 → e3 and e1 → e3,

107

30

2. Approach

e
1

e
2

e
3

!

[2,3]!

[3,3]

planning

horizon

!

[0,1]

e
1

e
2

!

[3,3]

planning

horizon

Figure 5-3: Example of a state plan where the pruning policy in Alg. 5 entails infea-
sible schedules.

which are explicitly mentioned in the state plan. The implied constraint e1 → e2

follows from the two explicit constraints. Since event e3 is guaranteed to be sched-

uled beyond the planning horizon, the two explicit constraints are pruned. As a

result, events e1 and e2 are no longer linked by any temporal constraint; therefore,

the schedule designed by Sulu might violate the implied constraint.

Second, the schedule might violate temporal constraints between events that re-

main to be scheduled, and events that have already been executed. This is illustrated

in Fig. 5-3, where pruning the temporal constraint between the two events results in

the domain of T (e2) being unbounded below; since e2 is no longer linked to any past

event, it can be scheduled at any point in time, regardless of when e1 was executed.

Third, when the objective is to minimize total plan execution time, we argued

previously (Section 4.1.3) that this objective could be encoded in the DLP by just

adding T (eend) to the DLP cost function, where eend is the end event of the qualitative

state plan. This is no longer valid; if eend is guaranteed to be scheduled beyond

the planning window, then all temporal constraints on eend have been relaxed, and

minimizing T (eend) does not have any effect on the time at which the other events

are scheduled.

To address the first two issues, instead of just pruning temporal constraints in-

volving events that are guaranteed to be scheduled outside of the current planning

window, we compile them out of the DLP. This involves explicitly encoding all tem-

poral constraints between any pair of events, instead of encoding only those that are

specified in the qualitative state plan. It also involves introducing new unary tempo-

ral constraints (different from the binary temporal constraints previously introduced),

108

Alg. 5 Pruning policy for the binary temporal constraint between events eS and eE

1: if Tmax
eS

< t0 then
2: {eS has already been executed;}
3: return true

4: else if Tmin
eS

> tNt then
5: {eS is out of reach within the current horizon;}
6: return true

7: else if Tmax
eE

< t0 then
8: {eE has already been executed;}
9: return true

10: else if Tmin
eE

> tNt then
11: {eE is out of reach within the current horizon;}
12: return true

13: else
14: return false

15: end if

40

2. Approach

e
S

e
E

t0 tNt

a)

b)

c)

d)

e
S

e
E

e
S

e
E

e
S

e
E

Figure 5-4: Illustration of the different cases in Alg. 5 (shaded areas are time periods
outside of the current planning window [t0, tNt]) : a) eS has already been executed
(line 1); b) eS is out of reach within the current horizon (line 4); c) eE has already
been executed (line 7); d) eE is out of reach within the current horizon (line 10).

109

which specify absolute lower and upper bounds on the times at which events can be

scheduled. In the following subsections, we describe how this is done, as well as how

we address the third issue, when the objective function consists of minimizing total

plan execution time.

Note that the method we use in order to compile the irrelevant temporal con-

straints out of the DLP is very similar to previous work on dispatchable plans

[17, 49, 60, 61], introduced in Section 2.1. The method described in the following

paragraphs is analog to computing a dispatchable plan for the qualitative state plan.

Binary Temporal Constraint Pruning

As perviously introduced, a temporal constraint between a pair of events 〈eS, eE〉

can be pruned if the time bounds on either event guarantee that the event will be

scheduled outside of the current planning window (Alg. 5, Fig. 5-4).

However, in order to avoid cases such as the one in Fig. 5-2, rather than apply-

ing this policy only to the explicit temporal constraints that are mentioned in the

qualitative state plan, we encode and apply the policy to all temporal constraints be-

tween any pair of events 〈e, e′〉, derived from the temporal bounds 〈∆Tmin
〈e,e′〉, ∆Tmax

〈e,e′〉〉

computed by the method in [17]. This way, no implied temporal constraint is un-

intentionally ignored, since all temporal constraints between all pairs of events are

explicitly encoded in the DLP.

Unary Temporal Constraint Pruning (Alg. 6, Fig. 5-5)

As previously introduced, in order to properly compile out binary temporal con-

straints without allowing situations such as the one in Fig. 5-3, we introduce a new

HMEx constraint that enforces unary temporal constraints on every event e; the

DLP encoding is presented in Eq. (5.5), where the bounds Tmin
e and Tmax

e are the

ones introduced at the beginning of Section 5.3.

Tmin
e ≤ T (e) ≤ Tmax

e (5.5)

110

Alg. 6 Pruning policy for the unary temporal constraint on an event e.

1: if Tmax
e < t0 then

2: {e has already been executed;}
3: return true

4: else if Tmin
e > tNt then

5: {e is out of reach within the current horizon;}
6: return true

7: else
8: return false

9: end if

45

2. Approach

e

t0 tNt

a)

b) e

e

t0 tNt

a)

b) e

Figure 5-5: Illustration of the different cases in Alg. 6: a) e has already been executed
(line 1); b) e is out of reach within the current horizon (line 4).

A unary temporal constraint on an event e can be pruned whenever e is guaranteed

to be scheduled before the beginning of the current planning window (line 1, Fig. 5-

5 a), or beyond the current planning horizon (line 4, Fig. 5-5 b).

Minimizing Total Plan Execution Time

This subsection only applies when the objective function consists of minimizing the

overall plan execution time. In Section 4.1.3, we argued that this objective could be

encoded in the DLP by just adding T (eend) to the DLP cost function, where eend is

the end event of the qualitative state plan. As previously mentioned, this approach

does not work if eend is pruned. To address this issue, rather than minimizing the

time T (eend) at which the end event is scheduled, we minimize the time T (e) at which

every event e is scheduled. This is encoded in the DLP by modifying the encoding for

unary temporal constraints (Eq. (5.5)); the new encoding is presented in Eq. (5.6).

The pruning policy remains the same (Alg. 6, Fig. 5-5).

111

Alg. 7 Pruning policy for a “Remain in state region R∀” activity starting at event eS

and ending at event eE

1: if Tmax
eE

< t0 then
2: {activity is completed;}
3: return true

4: else if Tmax
eS

< t0 then
5: {activity is being executed;}
6: return false

7: else if Tmin
eS

> tNt then
8: {activity will start beyond tNt ;}
9: return true

10: else if Tmax
eS
≤ tNt then

11: {activity will start within tNt ;}
12: return false

13: else if R∩R∀ = ∅ then
14: {R∀ is unreachable within tNt ; postpone start event eS:}
15: TIGHTEN BOUNDS(eS, tNt , T

max
eS

)
16: return true

17: else
18: return false

19: end if

41

2. Approach

e
S

e
E

Remain in R

e
S

e
E

Remain in R

e
S

e
E

Remain in R

e
S

e
E

Remain in R

t0 tNt

a)

b)

c)

d)

Figure 5-6: Illustration of the different cases in Alg. 7: a) The activity is completed
(line 1); b) The activity is being executed (line 4); c) The activity will start beyond
tNt (line 7); d) The activity will start within tNt (line 10).

112

Alg. 8 TIGHTEN BOUNDS(e, Tmin, Tmax) routine to tighten the time bounds on
an event e
1: if Tmin

e < Tmin then
2: {the new lower bound is tighter than the old one;}
3: Tmin

e ← Tmin

4: {propagate to other events:}
5: for all events e′ ∈ E do
6: Tmin

e′ ← max(Tmin
e′ , Tmin

e + ∆Tmin
〈e,e′〉)

7: end for
8: end if
9: if Tmax

e > Tmax then
10: {the new upper bound is tighter than the old one;}
11: Tmax

e ← Tmax

12: {propagate to other events:}
13: for all events e′ ∈ E do
14: Tmax

e′ ← min(Tmax
e′ , Tmax

e + ∆Tmax
〈e,e′〉)

15: end for
16: end if

Minimize : T (e)

Subject to : Tmin
e ≤ T (e) ≤ Tmax

e

(5.6)

5.3.2 Remain in Constraint Pruning (Alg. 7 and 8)

Consider the state constraint cS on a “Remain in state region R∀” activity a,

between events eS and eE (Eq. (4.24)). If eE is guaranteed to be scheduled in the

past (Fig. 5-6a), that is, it has already occurred (line 1), then a has been completed

and cS can be pruned. Otherwise, if eS has already occurred (line 4, Fig. 5-6b), then

a is being executed and cS must not be pruned. Else, if a is guaranteed to start

beyond the planning horizon (line 7, Fig. 5-6c), then cS can be pruned. Conversely,

if a is guaranteed to start within the planning horizon, (line 10, Fig. 5-6c), then cS

must not be pruned.

Otherwise, the time bounds on T (eS) and T (eE) provide no guarantee, but we can

still use the plant modelM to try to prune the constraint; ifM guarantees that R∀

is unreachable within the planning horizon, then cS can be pruned (line 13; refer to

Eq. (5.2) to (5.4) for the definition ofR). In that case, eS must be explicitly postponed

113

33

2. Approach

e
1

e
2

[1,3]

[2,4] [3,7]

e
1

e
2

[1,3]

[2,3] [3,6]

Figure 5-7: Temporal propagation of a change in a unary temporal constraint.

beyond the current planning horizon (line 15); otherwise, it could be scheduled within

the planning window, without the remain in constraint being enforced. Event eS is

postponed after tNt by calling the TIGHTEN BOUNDS routine in Alg. 8.

This routine changes the temporal bounds on an event (if the new bounds are

tighter than the old ones), and propagates the changes to the bounds on the other

events. Fig. 5-7 illustrates this on an example. In this example, the upper time bound

on event e1 is tightened from 4 to 3. By propagating this change to other events, we

are able to tighten the upper time bound on event e2 from 7 to 6.

5.3.3 End in Constraint Pruning (Alg. 9)

Consider a constraint cS on an “End in state region RE” activity ending at event eE

(Eq. (4.27)). If eE is guaranteed to be scheduled in the past, that is, it has already

occurred (Fig. 5-8a, line 1), then cS can be pruned. Otherwise, if the value of Tmax
eE

guarantees that eE will be scheduled within the planning horizon (line 4, Fig. 5-8b),

then cS must not be pruned. Conversely, it can be pruned if Tmin
eE

guarantees that eE

will be scheduled beyond the planning horizon (line 7, Fig. 5-8c). Finally, cS can also

be pruned if the plant model guarantees that RE is unreachable within the planning

horizon from the current plant state (line 10). Similar to Alg. 7, eE must then be

explicitly postponed.

114

Alg. 9 Pruning policy for an “End in state region RE” activity ending at event eE

1: if Tmax
eE

< t0 then
2: {eE has already occurred;}
3: return true

4: else if Tmax
eE
≤ tNt then

5: {eE will be scheduled within tNt ;}
6: return false

7: else if Tmin
eE

> tNt then
8: {eE will be scheduled beyond tNt ;}
9: return true

10: else if R∩RE = ∅ then
11: {RE is unreachable within tNt ; postpone end event eE:}
12: TIGHTEN BOUNDS(eE, tNt , T

max
eE

)
13: return true

14: else
15: return false

16: end if

44

2. Approach

e
S

e
E

End in R
E

e
S

e
E

End in R
E

e
S

e
E

End in R
E

t0 tNt

a)

b)

c)

Figure 5-8: Illustration of the different cases in Alg. 9: a) eE has already occurred
(line 1); b) eE will be scheduled within tNt (line 4); c) eE will be scheduled beyond tNt

(line 7).

115

Alg. 10 Pruning policy for the guidance constraint for an “End in state region RE”
activity ending at event eE

1: if Tmax
eE

< tnt then
2: {eE will be scheduled within the horizon;}
3: return true

4: else if Tmin
eS
≥ tnt then

5: {eS will be scheduled beyond the horizon;}
6: return true

7: else
8: return false

9: end if

46

2. Approach

e
S

e
E

End in R
E

e
S

e
E

End in R
E

t0 tnt

a)

b)

Figure 5-9: Illustration of the different cases in Alg. 10: a) eE will be scheduled
within the horizon (line 1); b) eS will be scheduled beyond the horizon (line 4).

5.3.4 Guidance constraint pruning (Alg. 10)

In Section 4.3.2, we introduced a new HMEx constraint that uses a guidance heuris-

tic to guide the plant towards the goal state of end in activities. As mentioned in

Section 4.3.2, this guidance constraint is only necessary when the end event eE is

scheduled beyond the execution horizon tnt , and the start event eS is scheduled be-

fore tnt . Therefore, this HMEx constraint can be pruned when eE is guaranteed to

be scheduled before tnt (line 1), or when eS is guaranteed to be scheduled after tnt

(line 4).

In this chapter, we presented the set of pruning polices used by Sulu in order

to simplify the DLP, by pruning constraints that are irrelevant since they refer to

parts of the state space that are unreachable within the current planning horizon,

or parts of the qualitative state plan that can be guaranteed not to be scheduled

within the current planning window. We first presented the pruning policies for

116

the constraints imposed by the plant model (Section 5.2). Pruning such constraints

involves computing a reachability set for the plant, in order to decide whether or

not a given forbidden region in the plant state space is reachable within the current

planning horizon. We then presented our pruning policies for the temporal constraints

and the state constraints imposed by the qualitative state plan (Section 5.3). These

policies involve computing bounds on the times at which events in the qualitative

state plan can be scheduled, in order to predict whether or not these events will be

scheduled within the current planning window. In the following chapter, we show

how the use of these policies enables Sulu to run in real time.

117

118

Chapter 6

Implementation and Performance

Analysis

In this chapter, we present in more detail the Hybrid Model-based Execution (HMEx)

algorithm (Section 6.1), and we demonstrate it (Section 6.2) by going through the

simple multi-UAV fire-fighting example from Section 3.1. We then provide a tech-

nical description of our implementation, and of the real-time, hardware-in-the-loop

testbed that we use to demonstrate our executive (Section 6.3). We finally present

experimental results obtained with this testbed and an analysis of the performance

of our model-based executive, Sulu, on a more complex test case (Section 6.4).

6.1 Pseudocode for Sulu

This section presents the pseudocode for the hybrid model-based executive. The

executive includes offline and online components, described, respectively, in the next

two subsections.

6.1.1 Offline Algorithm (Alg. 11)

The first part of the hybrid model-based executive algorithm (Alg. 11) is executed

offline. First, the lower and upper bounds (∆Tmin
〈e,e′〉 and ∆Tmax

〈e,e′〉) on the time between

119

Alg. 11 Offline Algorithm

1: {compute the explicit time bounds on all pairs of events:}
2: for all pairs of events 〈e, e′〉 do
3: {compute shortest paths within distance graph:}
4: ∆Tmin

〈e,e′〉 ← −dist(e′, e)

5: ∆Tmax
〈e,e′〉 ← dist(e, e′)

6: end for
7: {infer absolute time bounds on all events:}
8: for all events e do
9: Tmin

e ← T0 + ∆Tmin
〈estart,e〉

10: Tmax
e ← T0 + ∆Tmax

〈estart,e〉
11: end for
12: t0 ← T0

13: {“freeze” start event to time T0:}
14: TIGHTEN BOUNDS(estart, T0, T0)

events e and e′ are computed, for every pair of events 〈e, e′〉, by running a shortest

path algorithm on the distance graph introduced in Section 5.3 (lines 1 to 6). These

bounds are then used to compute the absolute time bounds Tmin
e and Tmax

e on every

event e, given a start time T0 for the execution of the qualitative state plan (lines

7 to 11). Recall (Section 5.3) that these absolute time bounds are used by the

constraint pruning policies, to identify the portion of the plan that is relevant to

each planning horizon.

Finally, we initialize receding horizon HMEx, by fixing the time t0 of the beginning

of the planning window to T0 (line 12). T0 corresponds to the time at which the

start event estart of the plan is required to be scheduled; this is enforced by calling

the TIGHTEN BOUNDS routine (Alg. 8) to set the time bounds on estart to T0

(line 14). Finally, at this point, the main loop of the online algorithm (Alg. 12) is

ready to be started.

6.1.2 Online Receding Horizon HMEx Algorithm (Alg. 12)

The online component of the receding horizon HMEx algorithm is presented in Alg. 12.

Following the receding horizon planning and execution framework, at each iteration

of the loop, the algorithm reasons over a short planning window [t0, tNt], which is

120

shifted by nt · ∆t at the end of each iteration (line 32). The algorithm terminates

as soon as the end event eend of the qualitative state plan is scheduled for execution

during the next iteration (line 33).

The consecutive steps, performed during each receding horizon control cycle, are

similar to the three main steps introduced in Fig. 3-9. They differ in that the first step,

involving encoding the HMEx problem as a DLP, is split into two steps (Steps 1 & 4).

(Step 1) Encoding HMEx as a DLP (lines 3 to 11): As introduced in Sec-

tion 5.1, the algorithm calls the pruning policy on every HMEx constraint in CHMEx,

and updates the DLP accordingly. When a constraint can be pruned (line 6), then it

is removed from the DLP (if it was in the DLP at the previous iteration), or simply

ignored (if it was not in the DLP before). When it cannot be pruned (line 9), it is

added to the DLP (if it was not in the DLP before), or updated (if it was already in

the DLP, but it involves parameters whose values changed, such as t0 or tNt).

(Step 2) Solving the DLP (lines 13 to 18): The algorithm calls the DLP solver

to solve the DLP. Since the algorithm must run in real time (each iteration must last

no longer than nt ·∆t), the solution process is interrupted after the allocated time for

solving the DLP has elapsed, and the solution retained is the best solution found thus

far. Note that this solution might be sub-optimal, in the event that the solver did

not have enough time to search through the complete feasible set. In the case that

no solution has been found (line 17), the algorithm aborts. This happens when the

qualitative state plan is simply infeasible with respect to the plant model, or when

Nt was chosen too high, and as a result, the algorithm is unable to run in real time,

due to the complexity of the DLP. This is discussed in more detail in Section 6.4.

(Step 3) Extracting the control sequence (line 20): This step simply consists

of extracting the partial control sequence U = 〈u(t0), . . . ,u(tnt−1)〉 from the solution

found for the DLP. Recall that the u(tk) are part of the decision variables of the DLP

(Eq. (4.4)). This control sequence U corresponds to the control inputs u for the first

nt steps in the current planning window, that is, up to the execution horizon.

121

Alg. 12 Online Receding Horizon HMEx Algorithm
1: repeat
2: {(Step 1) Encode HMEx as a DLP:}
3: for all HMEx constraints c ∈ CHMEx do
4: if p(c) = true then
5: {c can be pruned:}
6: remove c from DLP / ignore c
7: else
8: {c cannot be pruned:}
9: add c to DLP / update c in DLP

10: end if
11: end for
12: {(Step 2) Solve the DLP:}
13: {solve under limited computation time to make sure it runs in real-time:}
14: solve DLP for 〈u(t0), . . . ,u(tnt)〉 and T
15: if no solution found then
16: {the state plan is infeasible;}
17: abort
18: end if
19: {(Step 3) Extract the control sequence:}
20: U← 〈u(t0), . . . ,u(tnt−1)〉
21: {(Step 4) Prepare for next iteration:}
22: for all events e ∈ E do
23: if t0 ≤ T (e) < tnt then
24: {e has been scheduled within the execution window; “freeze” event:}
25: TIGHTEN BOUNDS(e, T (e), T (e))
26: else if T (e) ≥ tnt then
27: {e has been scheduled beyond the execution horizon; postpone event:}
28: TIGHTEN BOUNDS(e, tnt , T

max
e)

29: end if
30: end for
31: {shift the planning window by nt ·∆t:}
32: t0 ← t0 + nt ·∆t
33: until T (eend) < t0 {loop until eend is scheduled in the past}

122

e1 e2 e3 e5
End in [!1 at fire]

!

[6,")

Remain in [!1 at fire]

!

[5,8]

Remain in [!2 at fire]

!

[2,3]

e4

!

[0,")

End in [!2 at fire]

!

[12,") !

[0,")!

[0,20]

Start in [!1 & !2 at base]

Figure 6-1: Qualitative state plan in the fire-fighting example.

(Step 4) Preparing for next iteration (lines 22 to 30): This step involves

updating the time bounds on all the events in the qualitative state plan, to make sure

that:

1. Events e that have just been scheduled within the current execution window

are “frozen” (T (e) is frozen to its current value), since they are about to be

executed during the following iteration, and their execution time may no longer

be modified (line 25); and

2. Events that have been scheduled beyond the execution horizon are postponed

(line 28), in order to enforce that they do not get scheduled before t0, at the

next iteration.

This is accomplished by calling the routine TIGHTEN BOUNDS (Alg. 8).

6.2 Step-by-step Algorithm Demonstration

In this section, we demonstrate the receding horizon HMEx algorithm, step by step,

using the fire-fighting example introduced in Section 3.1. This simplified scenario

involves two UAVs, cooperating to extinguish a fire; the map of the terrain and the

qualitative state plan for this mission have been reported in Fig. 6-2 & 6-1. Alg. 11 is

first run once to initialize the planner, and Alg. 12 is then run several times iteratively,

shifting the horizon each time until the plan is completed, as presented in the following

paragraphs.

123

Table 6.1: Lower and upper bounds [∆Tmin
〈e,e′〉, ∆Tmax

〈e,e′〉] on the time between any pair

of events 〈e, e′〉 in the qualitative state plan in Fig. 6-1.

e\e′ e1 e2 e3 e4 e5

e1 [0, 0] [6, 13] [11, 18] [12, 18] [14, 20]
e2 [−13,−6] [0, 0] [5, 8] [5, 12] [7, 14]
e3 [−18,−11] [−8,−5] [0, 0] [0, 7] [2, 9]
e4 [−18,−12] [−12,−5] [−7, 0] [0, 0] [2, 3]
e5 [−20,−14] [−14,−7] [−9,−2] [−3,−2] [0, 0]

Figure 6-2: Map of the terrain for the fire-fighting example.

6.2.1 Initialization

Initialization is performed by running Alg. 11. First, the table of values for ∆Tmin
(e1,e2)

and ∆Tmax
(e1,e2) (Table 6.1) is obtained, by computing the shortest paths through the

distance graph, corresponding to the qualitative state plan (lines 1 to 6). The absolute

time bounds, Tmin
e and Tmax

e , for each event e are then inferred from the provided

execution start time, T (e1) = T0 = 0 (lines 7 to 11). Next, the beginning of the first

planning window is set to t0 = T0 (line 12). Finally, the start event e1 is “frozen”

to T (e1) = T0 (line 14) in order to enforce that it always be scheduled at time

T (e1) = T0 in the following iterations. The TIGHTEN BOUNDS routine (Alg. 8)

then propagates the change to the bounds on the other events. The resulting new

bounds are presented in Fig. 6-3 a).

124

3

T
0 5 10 15 20 25

e
2

e
3

e
4

e
5

e
1

e
1

e
2

a)

b)

c)

e
3

e
4

e
5

e
1

e
2

e
3

e
4

e
5

Figure 6-3: “Snapshots” of the schedule for the qualitative state plan in Fig. 3-5, at
different steps in the algorithm execution: a) First iteration (t0 = T0 = 0), Step 3
(line 20); b) Second iteration (t0 = T0 + nt · ∆t = 10), Step 3 (line 20); c) End of
second iteration (t0 = T0 +2nt ·∆t = 20, line 33). The bold dots represent the values
of T (e) for each event e, and the segments represent the bounds [Tmin

e , Tmax
e] on T (e).

6.2.2 First iteration (t0 = T0 = 0)

First, the pruning policy is run on every HMEx constraint (lines 3 to 11), in order

to determine which constraints should be encoded in the DLP, and which constraints

can be pruned. For instance, the time bounds in Fig. 6-3 a) guarantee that e2 will

be scheduled within the planning horizon; this fact is used by the pruning policy in

Alg. 10, to prune the heuristic constraint for activity “End in [α1 at fire]” (Alg. 10,

line 1). The same fact is used by the pruning policy in Alg. 9, to infer that the end

in state constraint, imposing aircraft α1 to be at the fire at event e2, must not be

pruned (Alg. 9, line 1).

Next, the resulting DLP is solved (Step 2, lines 13 to 18), and the new control

sequence U is extracted from the solution found to the DLP (Step 3, line 20). The

corresponding schedule is presented in Fig. 6-3 a). Note that, although the bounds

on T (e2) inferred from the temporal constraints in the qualitative state plan allowed

event e2 to be scheduled as early as T (e2) = 4, it was scheduled at time T (e2) = 8,

125

Figure 6-4: Trajectories computed at the first iteration (in bold: up to tnt ; in light:
between tnt and tNt)

which is the earliest time that aircraft α1 could get to the fire (Fig. 6-4), given the

constraint on its maximum allowed velocity. As a consequence, event e3 was scheduled

at time T (e3) = 13, in order to satisfy the temporal constraint specifying that e3 must

be scheduled no earlier than 5 time units after e2. Fig. 6-4 also shows that aircraft α2

could not get to the fire within the current planning horizon; following the encoding in

Eq. (4.27), event e4 was, hence, postponed to tNt + ∆t
2

= 15.5, with ∆t = 1 time unit.

The earliest time that the end event e5 could be scheduled was then T (e5) = 17.5,

according to the temporal constraint, specifying that e5 may not be scheduled earlier

than 1 time unit after e4.

Finally (Step 4, lines 22 to 30), the algorithm prepares for the next iteration, by

tightening the bounds on any event that can be tightened. In our example, event e2

has been scheduled within the current execution window; it is, hence, frozen to its

current scheduled time of T (e2) = 8 (line 25). The routine TIGHTEN BOUNDS

then propagates this to the other events; the resulting new bounds are illustrated in

Fig. 6-3 b).

126

6.2.3 Second iteration (t0 = T0 + nt ·∆t = 10)

As argued in Section 3.5.1, the receding horizon framework that we use to solve the

HMEx problem allows Sulu to adapt to disturbances and unforeseen events. In this

section, we illustrate this capability by assuming that, from the first to the second

iteration, new updated information about the fire has been gathered, for instance,

from analysis of satellite imagery, and that the fire region turns out to be narrower

than first expected (Fig. 6-5). This information is used to update the qualitative state

plan, by updating the state constraints on the activities mentioning the fire. Note

that the trajectories, initially designed at the previous iteration (Fig. 6-4), would no

longer satisfy the qualitative state plan, since they would lead aircraft α1 to remain

in the fire region for less than 5 time units. Hence, while the vehicles are following

the trajectories uploaded at the end of the previous iteration, up to the execution

horizon tnt only, Sulu needs to design new trajectories that start from tnt , and take

into account this change in the plan.

Following Alg. 12, the DLP is first updated (Step 1, lines 3 to 11), by pruning the

HMEx constraints that are no longer necessary, and by adding the constraints that

can no longer be pruned. For instance, the constraint that imposes aircraft α1 to be

at the fire at event e2 is pruned and removed from the DLP, since e2 has already been

executed (Alg. 9, line 1).

The algorithm then solves the updated DLP (Step 2, lines 13 to 18), and the

new control sequence U is extracted from the solution found to the DLP (Step 3,

line 20). The corresponding trajectories are illustrated in Fig. 6-5. Note that they

are different from the ones initially computed at the previous iteration, due to the

change in the shape of the fire region. The new trajectory for aircraft α1 now satisfies

the qualitative state plan, since α1 remains in the fire region for 5 time units, as

specified by the temporal constraint on the “Remain in [α1 at fire]” activity.

The schedule corresponding to these new trajectories is presented in Fig. 6-3 b).

Event e3 was scheduled at time T (e3) = 13, similar to the previous iteration, contrary

to event e4, which was scheduled at time T (e4) = 17. This is later than the earliest

127

Figure 6-5: Trajectories computed at the second iteration (in bold: up to tnt ; in light:
between tnt and tNt)

time Tmin
e2

= 13 allowed by the temporal constraints in the qualitative state plan,

since the upper bound on α2’s velocity prevented it from reaching the fire earlier.

Event e5 was delayed accordingly. Note that events e1 and e2 were not scheduled

at all: since they have already been executed, their time variables, T (e1) and T (e2),

have been pruned from the DLP, using the pruning policy in Alg. 6.

The time bounds on events are then tightened, when possible, following the

method in Step 4 (lines 22 to 30). In this case, events e3, e4 and e5 have all been

scheduled within the current execution horizon, so they are “frozen” to their current

respective times (line 25). The resulting, new bounds are presented in Fig. 6-3 c).

The planning window is then shifted by nt ·∆t (line 32), and the algorithm terminates,

since the end event e5 is now guaranteed to be scheduled before t0 = T0+2·nt ·∆t = 20

(line 33).

6.3 Implementation on a UAV Testbed

Sulu has been implemented in C++, using the commercial software Ilog CPLEX [2]

to solve the DLPs. Note that, in order to solve a DLP, CPLEX first reformulates it

128

Figure 6-6: Architecture of the CloudCap testbed. This picture was taken from [15]

into a Binary Integer Program (BIP), and then uses traditional branch-and-bound

techniques to solve the BIP. Current work [34, 42, 43] has showed that one can use

more efficient, conflict-directed techniques to solve the DLP, by solving it directly in

order to exploit its structure, rather than first convert it into a BIP. However, the DLP

solver algorithm introduced in [42] can currently only handle DLPs in Conjunctive

Normal Form (Def. 17), and, even though algorithms exist in order to reduce any DLP

in propositional form (Def. 18) into CNF, this reduction is worst-case exponential in

time and space. In practive, tests have showed that our computer would run out of

memory when it tried to perform this reformulation on DLPs generated by the test

case presented in Section 6.4.1. For this reason, we have been using CPLEX, until

the DLP solver in [42] can handle DLPs in general propositional form.

Our receding horizon HMEx algorithm has been tested on a 1.7GHz computer

with 512MB RAM, using a hardware-in-the-loop testbed that consists of two Cloud-

Cap Piccolo Plus autopilots (Fig. 6-6, left) [1]. Each autopilot is a complete integrated

129

avionics system, including GPS and a flight sensor interface. Typically, an autopilot

would be mounted onboard a model aircraft, and provide low-level control by taking

in sensor measurements (static pressure, dynamic pressure, inertial data...) and send-

ing control inputs to the onboard actuators. The operator communicates with the

autopilot via radio wavelength, through a Piccolo ground station (Fig. 6-6, bottom).

The ground station is connected via a serial port to a PC running the operator inter-

face (Fig. 6-6, right), which enables the operator to monitor the state of the aircraft,

and to send lists of waypoints to the autopilots.

In order to test Sulu, rather than mount the autopilots on real model aircrafts,

the autopilots interact with a simulator through a CAN bus (Fig. 6-6, center). The

simulator takes in control inputs from the autopilots, applies them to an aircraft

dynamics model, and simulates in real time the sensor measurements needed by the

autopilots. The model used is a very realistic model of the dynamics of the aircraft;

hence, this real-time, hardware-in-the-loop setup provides a simulation testbed that

is only one step away from real flight testing.

Furthermore, as previously mentioned, the autopilots take in series of waypoints,

rather than low-level control inputs. This enables us to abstract away the problem

of low-level control of the aircraft, and to use the simple plant model introduced in

Section 3.2.1. Sulu designs trajectories in the plant’s state space, which are then

converted into sequences of close x/y waypoints. The sequences are sent through

a TCP/IP interface to the operator interface, which relays them to the autopilots.

The operator interface also relays information about the state of the aircraft to the

executive through the same interface.

6.4 Model-based Executive Performance Analysis

on a More Complex Test Case

In this section, we first present a multiple-UAV fire-fighting scenario (Section 6.4.1)

that is more complex than the one previously presented (Section 3.1). This sce-

130

Figure 6-7: Map of the environment in the multi-UAV fire-fighting scenario.

nario is the test case that we then use to discuss the real-time performance of Sulu

(Section 6.4.2).

6.4.1 Description of the Test Case

In Section 3.1, we introduced a simple multiple-UAV fire-fighting example that we

used to illustrate the concepts and algorithms presented in this thesis. In this section,

we introduce a similar, more complex example, used in Section 6.4 to assess the

performance of Sulu. This scenario involves two aircraft, executing a qualitative

state plan consisting of 26 activities, for a total mission duration of about 1,300 sec.

As shown in Fig. 6-7, the environment consists of two no-fly-zones, and a set of

goal waypoints that the aircrafts must visit in a specific order, according to the

qualitative state plan. The following is a short, natural language description of the

plan, represented in Fig. 6-8.

131

Figure 6-8: Qualitative state plan used for performance analysis.

132

The two aircraft α1 and α2 start at a common Base. Aircraft α1 is a

water tanker; its mission is to first fill up its water tank at Water 2 and

drop it on Fire 2. It must then refill its water tank at Water 1, and drop

water on Fire 1. Finally, it must go back to the Base, refilling its fuel tank

along the way at Fuel 2. Aircraft α2 is a reconnaissance UAV; its mission

is to take a picture of each fire, before and after aircraft α1 drops water

on it. It must start with Fire 2 and then Fire 1, refilling its fuel tank

between the two rounds at Fuel 2. Each time they perform an action at

a specific waypoint (e.g. refilling a tank, or taking a picture), the aircraft

must remain in the vicinity of the corresponding waypoint for 30 sec. The

overall mission duration must be lower than 18,000 sec.

For this test case, the objective function corresponds to minimizing total plan

execution time.

6.4.2 Performance Analysis

Fig. 6-9 and 6-10 present an analysis of the performance of Sulu on the test case

introduced in Section 6.4. These results show runtimes for a single iteration of the

receding horizon HMEx algorithm, which were obtained by averaging runtimes over

the whole plan execution, and over 5 different runs with random initial conditions.

At each iteration, the computation was cut short if and when it passed 200 sec, and

we retained the best solution to the DLP found thus far.

In both figures, the x axis corresponds to the length of the execution horizon,

nt ·∆t, in seconds. For these results, we maintained a planning buffer of tNt − tnt =

10 sec. The y axis corresponds to the average time in seconds required by CPLEX

to solve the DLP at each iteration. As shown in Fig. 6-9, the use of pruning policies

entails a significant gain in performance. Note that these results were obtained by

disabling the Presolve function in CPLEX, which also internally prunes some of the

constraints in order to simplify the DLP.

Fig. 6-10 presents an analysis of Sulu’s capability to run in real time. The dotted

133

6 6.5 7 7.5 8 8.5 9 9.5 10
5

10

15

20

25

30

35

Length of execution horizon (in sec)

A
ve

ra
ge

 D
LP

 so
lv

in
g

tim
e

(in
 se

c) With constraint pruning
Without constraint pruning

Figure 6-9: Performance gain by constraint pruning.

line is the line y = x, corresponding to the real-time threshold. It shows that below

the value x ' 7.3s, Sulu is able to compute optimal control sequences in real time,

since the average DLP solving time is below the length of the execution horizon. For

longer horizons, corresponding to values of x above 7.3s, CPLEX is unable to find

optimal solutions to the DLPs before Sulu has to replan, that is, the solving time is

greater than the execution horizon. Note that in this case, since CPLEX performs

branch and bound, which runs as an anytime algorithm, we can still interrupt it

and use the best solution found thus far, in order to generate sub-optimal control

sequences.

Also note that the number of the disjunctions in the DLP grows linearly with

the length of the planning horizon; therefore, the complexity of the DLP is worst-

case exponential in the length of the horizon. In Fig. 6-10, however, the relationship

appears to be linear. This can be explained by the fact that the DLP is very sparse,

since no disjunct in the DLP involves more than three or four variables.

In this chapter, we first presented in detail the pseudocode for our receding horizon,

hybrid, model-based executive (Section 6.1). We showed that the algorithm could be

134

5 6 7 8 9 10
2

4

6

8

10

12

14

Length of execution horizon (in sec)

Average DLP solving time (in sec)
Real−time threshold

Figure 6-10: Performance of Sulu.

decomposed into an initial offline phase, during which we compute the absolute time

bounds on events that are needed by the pruning policies, and an online phase, that

generates control sequences for the plant in real-time, over shifting planning windows.

In Section 6.2, we then demonstrated our algorithm step by step, on the simple

multiple-UAV fire-fighting introduced in Section 3.1. We showed that our receding

horizon approach enabled Sulu to adapt to disturbances, by replanning regularly,

taking into account the latest knowledge about the state of the plant, and possible

unforeseen events. We then briefly described how we implemented Sulu and tested

it using a real-time, hardware-in-the-loop UAV testbed (Section 6.3). Finally, in

Section 6.4, we presented some real-time performance analysis, which showed that

our executive was able to run in real-time, on a more complex UAV scenario.

135

136

Chapter 7

Conclusion and Future Work

In this chapter, we propose areas of future work, in order to improve and extend the

capabilities of the HMEx algorithm in general (Section 7.1.1), and, more specifically,

the constraint pruning algorithms, presented in Chapter 5 (Section 7.1.2). We also

discuss how Sulu can be integrated with related work in model-based programming

and contingent, temporal plan execution (Section 7.1.3), in order to enable higher-

level coordination and control of cooperative systems. Finally, we conclude this thesis

by summarizing the capabilities and achievements that we have presented in previous

chapters (Section 7.2).

7.1 Future Work

7.1.1 Improvements and Extensions of the HMEx Algorithm

In this section, we describe improvements that could be made to our HMEx algorithm.

First, we describe how it could be extended to handle probabilistic state estimates

from the state estimator; we then present possible extensions with respect to han-

dling uncertainty and uncontrollable events in the qualitative state plan. Finally, we

show how the algorithm could be distributed, in order to be deployed on plants with

multiple subplants, such as a team of UAVs.

137

Probabilistic Control Sequence Generation

As mentioned in Section 3.4.2, in this thesis, we abstracted away the state estima-

tion problem, by assuming that the hybrid controller had a unique, non-probabilistic

knowledge of the state of the plant at all times. In practice, this means that the state

estimator outputs the most likely state that is consistent with the plant model, the

observations from the plant, and the control sequences previously sent to the plant.

The hybrid controller then assumes that this most likely state is the true state, and

designs control sequences that start from this initial state.

This approach is not always applicable, since the maximum likelihood assumption

does not always hold. For instance, consider the case where the state estimator

infers from the observations that the plant may be in only two possible states, with

probabilities 51% and 49%, respectively. In that case, Sulu would assume that the

plant is in the first state. However, there is a high probability that it is in the

second state, and that the control sequence generated by Sulu, based on the wrong

assumption, will drive the plant into a forbidden region of the state space. Hence,

Sulu is not robust to state estimation errors.

In order to make it more robust, future work could remove the maximum likelihood

assumption, by allowing the hybrid controller to take in a belief state, consisting of

a probability distribution over the plant’s state space. Given such a belief state,

computed by the state estimator, the function of the hybrid controller would then

be to generate control sequences that are guaranteed to satisfy the plant model and

to complete the qualitative state plan, with some given probability α. Alternatively,

it could also design control sequences that minimize the probability of failure, either

due to “collision” with a forbidden region of the state space, or due to the inability

to complete the qualitative state plan.

Qualitative State Plans with Uncertainty

Another assumption we have made in this thesis is that Sulu is free to choose a

schedule for the qualitative state plan, as long as it satisfies the plan’s temporal

138

constraints and is consistent with the control sequence. In other words, we have

assumed that all events in the qualitative state plan are controllable, since Sulu is

free to choose the time at which they are executed. In some applications, however, the

model-based executive might not have full control over one or more events, because

the time at which they are executed is given by nature, or controlled by another

system in the environment. For instance, in the multiple-UAV fire-fighting example,

one event in the qualitative state plan might be required to be synchronized perfectly

with an external event over which the UAVs have no control, such as the arrival of a

ground support unit. Alternatively, the event could correspond to the end event of

an activity whose duration is not exactly known in advance. For instance, the exact

time needed by a UAV to refuel might only be known within certain time bounds.

Previous work on simple temporal networks with uncertainty (STNUs) have tack-

led the problem of providing guarantees on the existence of a temporally consis-

tent schedule for the plan, regardless of the outcome of the uncontrollable events

[48, 50, 58, 60, 61]. For instance, they define the concepts of strong controllability

and dynamic controllability. An STNU is strongly controllable if one can compute,

beforehand, a schedule for all the controllable events, such that, for all possible execu-

tion times for the uncontrollable events, the complete schedule is always temporally

consistent. Similarly, an STNU is dynamically controllable if one can compute, on

the fly, a schedule for the controllable events, knowing the execution times of past

uncontrollable events, such as the overall schedule is temporally consistent.

Future work could look into applying these concepts to Sulu, in order to allow it

to reason on qualitative state plans with temporal uncertainty.

Distributed HMEx Algorithm

The algorithm described in this thesis is fully centralized; this means that it must be

executed on a single processor, which has control over the whole plant. In the case of

a plant that consists of multiple vehicles, for instance, multiple UAVs coordinating

to extinguish fires, this fully centralized architecture might not be applicable, due to

communication limitations: all aircraft might not be able to communicate with a cen-

139

tral processor at all times, and communication latency might prevent this centralized

architecture from meeting real-time requirements. Furthermore, this approach does

not scale well with the number of UAVs, since the computational power needed to

run the algorithm might become too high for a single processor.

In this case, it becomes necessary to distribute the algorithm, so that it can run on

different processors, for instance at different ground stations, or even onboard each of

the vehicles. The main challenge in order to distribute the algorithm is to be able to

split the receding horizon HMEx problem into several, loosely coupled subproblems.

The state equations in the plant model could easily be decoupled across different

vehicles, assuming that the state equation for a state variable related to a given

aircraft does not depend on state variables related to different aircraft. Forbidden

regions pertaining to a subspace of the state space corresponding to a given vehicle

can also be easily decoupled. Coupling is introduced by state equations or forbidden

regions involving state variables corresponding to different vehicles. The qualitative

state plan can also introduce coupling between HMEx subproblems, either through

state constraints that involve state variables corresponding to different vehicles, or

through the temporal constraints in the plan, which specify synchronization between

the aircraft.

Previous work has been done on distributed branch-and-bound algorithms, in

order to solve MILPs in a distributed fashion, on parallel processors [47]. Such dis-

tributed algorithms, however, usually heavily rely on the fact that all processors can

communicate with each other, and that communication is almost instantaneous, so

that the capability of the algorithm to run in real time is not threatened by commu-

nication delays.

Previous work has tackled the problem of decoupling STNs for parallel scheduling

and execution, under communication limitations [58]. Note, however, that this work

only dealt with STNs, rather than with qualitative state plans. For this reason,

this work only applies when the coupling constraints in the qualitative state plan are

temporal constraints. Under this assumption, [58] decouples STNs using a hierarchical

reformulation and decoupling algorithm, which identifies a set of group plans that

140

describe the desired behavior of a set of sub-plants, and an overall mission plan,

which introduces temporal coupling between the different group plans. Based on a

strong controllability property of the mission plan, the algorithm compiles out the

coupling temporal constraints in the mission plan, in order for each sub-plant to be

able to execute its own group plan, without the need to communicate with other

sub-plants. This approach could be used to distribute the HMEx algorithm, when

the only coupling constraints in the qualitative state plans are temporal constraints.

7.1.2 Improvements on the Constraint Pruning Framework

In this section, we describe improvements on the HMEx algorithm that are specific to

the constraint pruning framework presented in Chapter 5. We first suggest a small,

incremental improvement on the pruning policies for temporal constraints, presented

in Section 5.3.1. We then introduce possible threads of future work that would require

more fundamental changes to the overall pruning framework, in order to make it more

efficient.

Incremental Improvement on the Temporal Constraint Pruning Policies

As mentioned in Section 5.3.1, the pruning policy for temporal constraints in the

qualitative state plan uses a method that consists of compiling out the constraints

that are irrelevant, given the current planning window. To do so, we explicitly encode

all binary temporal constraints between all events in the plan, and all unary temporal

constraints on any given event. Then, we can prune a constraint if it involves an event

that is guaranteed to be scheduled outside the current planning window, without loss

of correctness.

However, some of the remaining temporal constraints that have not been pruned

might be redundant. One could use an edge trimming algorithm similar to [17], on

the graph corresponding to the qualitative state plan, in order to further prune some

of the remaining temporal constraints, until no constraint can be pruned, without loss

of correctness. This method would effectively be equivalent to computing a minimal

141

dispatchable plan for the qualitative state plan, as described in Section 2.1.

This incremental improvement to the pruning policies for constraints imposed by

the qualitative state plan is likely to only lead to a small gain in efficiency. In the

following subsection, we describe how one could modify more radically the pruning

framework, in order to lead to greater improvements in efficiency.

Proposed Changes to the Pruning Framework

One possible improvement to the current pruning framework is motivated by the

following simple observation. Consider a forbidden region R in the plant’s state

space, and consider that the planning horizon is Nt = 10 time steps. The plant is

required to remain outside of R at all time steps within the planning window; hence,

our current pruning policy for the corresponding HMEx constraint returns true, that

is, the constraint is prunable, if and only if R is out of reach of the plant within the

current planning horizon, in which case the plant is guaranteed to remain outside of R

at all time steps in [t0, tNt]. However, consider the case when R is unreachable within

5 time steps, but becomes reachable at the 6th time step. In that case, the HMEx

constraint (Eq. (4.6)) would not be pruned by our current pruning policy, although

the part of Eq. (4.6) corresponding to the first 5 time steps could be pruned, since

the plant is guaranteed to remain outside of R during these first 5 time steps. This

suggests that, instead of applying the pruning policies to the HMEx constraint that

specifies that the plant should remain outside of R at all time steps, the policy should

be applied to the HMEx “sub-constraints” that specify that the plant should be

outside of R at a specific time step tk in the planning window.

More generally, this suggests a fundamental change to the current pruning frame-

work: rather than using pruning policies, in order to decide whether or not an HMEx

constraint can be pruned, one could instead apply simplification policies. In that

context, pruning or not pruning a constraint corresponds to two ends of a spectrum;

simplification policies would allow cases in the middle of that spectrum, where con-

straints might be pruned only partially. This idea applies to all HMEx constraints,

not only the constraints corresponding to forbidden regions in the state space, as

142

described in the previous paragraph. For instance, consider the HMEx constraint

that encodes an end in activity, ending at event eE (Eq. (4.25)). If the upper bound

on T (eE) verifies Tmax
eE

< tk − ∆t
2

for some time step tk in the planning window, then

it follows that T (eE) is guaranteed to be strictly smaller than tk− ∆t
2

, and Eq. (4.25)

can be simplified, by replacing the disjunct T (eE) ≥ tk− ∆t
2

by false, since it is guar-

anteed to be violated. This would correspond to simply removing T (eE) ≥ tk − ∆t
2

from the disjunction. To do this in a systematic manner, one could design a routine

which would parse all the DLP constraints, and replace by true (or false) the linear

equalities or inequalities that are guaranteed to be satisfied (or violated, respectively).

The concept of a constraint simplification policy relates to similar ongoing work in

model-based programming for continuous, under-actuated plants [26]. As introduced

in Section 3.5.3, the model-based executive in [26] also takes in a qualitative state

plan. The executive then uses constraint tightening techniques based on an analysis

of the plant model, in order to tighten/simplify the constraints mentioned in the state

plan. For instance, consider an activity in the plan that specifies a goal region R for

the plant. Some parts of R might not be reachable by the plant, because they violate

one or more of the forbidden regions in the plant’s state space. These parts can

then be removed from R without loss of correctness; this can be done by replacing R

with the subtraction from R of all the regions in the set F of forbidden regions.

Temporal constraints can also be tightened; for instance, consider a “Remain in state

region R1” activity, followed by an “End in state region R2” activity, with lower

time bound 0. The lower time bound on the second activity can be tightened, by

computing an optimistic approximation of the time required by the plant to go from

R1 to R2. This constraint tightening technique could be used to improve the pruning

framework presented in this thesis, by pruning state sequences that are allowed by

the qualitative state plan, but disallowed by the plant model.

Other work on knowledge compilation [20] could also be applied to make the

pruning process more efficient. Instead of systematically going through the list of all

the constraints in the DLP, and applying the pruning policies to each constraint in

order to determine whether or not it can be pruned, one could compile the constraints

143

into a hierarchical, spacial data structure, which would describe what part of the

state space is disallowed by each constraint. Using this pre-computed, structural

decomposition of the problem, one could more efficiently look up which constraints are

applicable and which constraints can be pruned, given the current planning window.

7.1.3 Integration with an HTN Planner

Finally, in this section, we present ongoing work aiming at integrating Sulu with a

model-based executive for contingent temporal plans, called Kirk [32], presented in

Section 2.2.1. Kirk has been designed to generate the input qualitative state plan for

Sulu, in very much the same way as a control sequencer is used to generate the input

for Titan’s Mode Reconfiguration component [66], described in Section 2.2.1. This

further elevates the level of interaction between the human operator and the plant,

by allowing the operator to control the plant through an RMPL program, which

describes the desired behavior of the plant, at a very high, abstract level. It also

provides more robustness to the system, by allowing it to recover from failures, when

the HMEx problem is found infeasible. When this happens, Sulu passes the reason

for infeasibility back to Kirk, which chooses a contingent sequence of activities to

execute, in order to recover from the failure. However, as mentioned in Section 2.2.1,

one important difference with [66] is that Titan is a purely reactive model-based

executive, while Kirk and Sulu are model-predictive, since they use a model of the

plant in order to plan control sequences into the future.

Section 3.5.3 also suggested the integration of Sulu with another model-based

executive introduced in [26], which would enable Sulu to be more robust to frequent,

low-level disturbances, by using classical PID controllers to control the plant, and

designing gains and setpoints for these controllers.

7.2 Conclusion

In this thesis, we have presented a receding horizon, hybrid, model-based executive,

called Sulu, which is capable of performing robust, model-based execution of tempo-

144

rally flexible plans, on continuous dynamical systems (or plants), such as cooperative

vehicles or chemical plants. Sulu enables the human operator to control the plant at

an abstract, task level, by specifying the desired state evolution of the plant, in the

form of a qualitative state plan. A qualitative state plan describes families of allowed

state trajectories for the plant. Sulu reasons over a model of the plant, in order to

continuously generate optimal trajectories that are consistent with this plan.

The main innovation in this thesis is that we perform temporal plan execution, on

under-actuated plants with continuous dynamics and hidden state. While previous

work has tackled the problem of temporal plan execution [7, 13, 49, 60, 61, 65], it has

only been applied to plants that are described using discrete models. Previous work in

model-based programming [66] also presented a framework to control under-actuated

systems with hidden state, but their model-based executive was designed only for

discrete systems. In this thesis, we have described how we extend these two threads

of research in order to handle plants with continuous dynamics. This includes hybrid

systems, whose continuous dynamics are dependent on discrete modes the plant can

be in. We use a receding horizon approach [10, 24, 39, 51, 52, 54, 57] in order to

perform robust execution of the qualitative state plans, and we achieve real-time

performance through the use of novel constraint pruning policies.

A qualitative state plan involves activities that specify abstract, qualitative regions

in the state space that the plant must go through. The plan pieces these activities

together in the form of a temporal plan, using flexible temporal constraints between

activities, in order to specify precedence constraints, and constraints on the duration

of activities and the time at which they must be performed. The use of such an

abstract, qualitative goal specification for the plant elevates the interaction with the

plant, so as to enable the human operator to perform high-level, supervisory control

of the system. It also delegates more control authority to the model-based executive,

giving it more opportunities to achieve the goal in an optimal fashion, and giving it

also more room to adapt to disturbances and unforeseen events.

Sulu formulates the problem of designing optimal control sequences for the plant

(HMEx problem) as a Disjunctive Linear Program (DLP). The DLP formalism is a

145

mixed logic/optimization mathematical formalism that enables us to encode both the

logical, decision-making component of HMEx, due to non-convex constraints imposed

by the plant model and the qualitative state plan, and its continuous, optimization

component, due to the continuous plant dynamics.

We achieve robustness and tractability by interleaving planning and execution,

following a receding horizon framework; this enables Sulu to plan partial control

sequences, and reactively revise these sequences in order to adapt to disturbances

and unforeseen events, by replanning regularly, taking into account the latest knowl-

edge about the state of the world. We use a set of novel constraint pruning policies

to enable real-time execution, by pruning some of the constraints in HMEx, and

hence, simplifying the problem. We demonstrated these capabilities on a real-time,

hardware-in-the-loop testbed, in the context of a multiple-UAV fire-fighting scenario.

146

Appendix A

Proof of Equivalence between the

Two State Equation Encodings in

Eq. (4.8) and (4.9)

In this appendix, we formally prove the equivalence between the intuitive encoding for

the plant state equation (Eq. (4.8)), and the encoding we use in the DLP (Eq. (4.9)).

It is important that the two encodings be perfectly equivalent, in order to make sure

that choosing one over the other does not introduce new solutions to the problem,

nor remove solutions from the original problem. For this purpose, we formally show

that the DLP formula in Eq. (4.8) is equal to the formula in Eq. (4.9).

Let pj be the proposition 〈s,u〉(tk−1) ∈ Sj, and qj be s(tk) = F|Sj
(s(tk−1),u(tk−1)).

Then Eq. (4.8) is equivalent to
∧

k

{∧
j {pj ⇒ qj}

}
. Since S is a partition of S, it

147

must completely cover S, hence
∨

i pi = true. Therefore:

∧
j {pj ⇒ qj} = {

∨
i pi} ∧

{∧
j {pj ⇒ qj}

}
=

∨
i

{
pi ∧

{∧
j {pj ⇒ qj}

}}
=

∨
i

{
pi ∧

{∧
j {¬pj ∨ qj}

}}
=

∨
i

{∧
j {pi ∧ {¬pj ∨ qj}}

}
=

∨
i

{∧
j {{pi ∧ ¬pj} ∨ {pi ∧ qj}}

}
=

∨
i

{
{{pi ∧ ¬pi} ∨ {pi ∧ qi}} ∧

{∧
j 6=i {{pi ∧ ¬pj} ∨ {pi ∧ qj}}

}}
=

∨
i

{
{pi ∧ qi} ∧

{∧
j 6=i {{pi ∧ ¬pj} ∨ {pi ∧ qj}}

}}
=

∨
i {{pi ∧ qi} ∧ φi}

Furthermore, since S is a partition of S, ¬pj =
∨

l 6=j pl for all j; therefore:

φi =
∧

j 6=i

{{
pi ∧

{∨
l 6=j pl

}}
∨ {pi ∧ qj}

}
=

∧
j 6=i

{{∨
l 6=j {pi ∧ pl}

}
∨ {pi ∧ qj}

}
Since S is a partition of S, pi ∧ pl is always false, except when i = l; hence,∨

l 6=j {pi ∧ pl} = pi ∧ pi = pi, for all j 6= i. Therefore:

φi =
∧
j 6=i

{pi ∨ {pi ∧ qj}} =
∧
j 6=i

pi = pi

One can then infer the following equality:

∧
j

{pj ⇒ qj} =
∨
i

{{pi ∧ qi} ∧ pi} =
∨
i

{pi ∧ qi}

This concludes the proof, since Eq. (4.9) is equivalent to
∧

k {
∨

i {pi ∧ qi}}.

148

Bibliography

[1] Cloudcap technology home page: www.cloudcaptech.com/piccolo plus.htm.

[2] Ilog CPLEX home page: www.ilog.com/products/cplex.

[3] Aviation week & space technology 2005 source book, January 2005.

[4] James F. Allen. Maintaining knowledge about temporal intervals. In Proceedings

of the ACM, pages 832–843, November 1983.

[5] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata:

An algorithmic approach to the specification and verification of hybrid systems.

Hybrid Systems, NLCS(736):209–229, 1993.

[6] Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of relaxing

punctuality. Journal of the ACM, 43:116–146, 1996.

[7] J. A. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitor-

ing. In Proceedings of the Seventh National Conference on Artificial Intelligence.

AAAI Press, 1988.

[8] Eugene Asarin, Olivier Bournez, Thao Dang, and Oded Maler. Approximate

reachability analysis of piecewise-linear dynamical systems. In Proceedings of

the Third International Workshop on Hybrid Systems: Computation and Control

(HSCC-00), pages 20–31, 2000.

[9] Egon Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51,

1979.

149

[10] John Bellingham, Arthur Richards, and Jonathan How. Receding horizon control

of autonomous aerial vehicles. In Proceedings of the American Control Confer-

ence, 2002.

[11] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.

Athena Scientific, 1997.

[12] Lars Blackmore, Stanislav Funiak, and Brian C. Williams. Combining stochas-

tic and gredy search in hybrid estimation. In Proceedings of the 20th National

Conference on Artificial Intelligence, 2005.

[13] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using iter-

ative repair to improve responsiveness of planning and scheduling. In Proceed-

ings of the Fifth International Conference on Artificial Intelligence Planning and

Scheduling, Breckenridge, CO, April 2000.

[14] F. J. Christophersen, M. Baotić, and M. Morari. Optimal Control of Piecewise

Affine Systems: A Dynamic Programming Approach. Technical Report AUT05-

04, Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH),

May 2005.

[15] CloudCap Technologies. CloudCap Piccolo Quick Setup Guide, 10 2002.

[16] T. Dang and O. Maler. Reachability analysis via face lifting. In Hybrid Systems:

Computation and Control, 1998.

[17] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial

Intelligence Journal, 1991.

[18] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing

generalized robot plans. Artificial Intelligence, 3:251–288, 1972.

[19] C.A. Floudas. Nonlinear and Mixed-Integer Programming - Fundamentals and

Applications. Oxford University Press, 1995.

150

[20] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a-priori

tree structures. In Proceedings of SIGGRAPH’80, pages 124–133, 1980.

[21] Carlos E. Garcia. Advances in industrial model-predictive control. In Chemical

Process Control (CPC-III), 1986.

[22] M.R. Greenstreet and I. Mitchell. Reachability analysis using polygonal projec-

tions. In Hybrid Systems: Computation and Control, 1999.

[23] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the

11th Annual IEEE Symposium on Logic in Computer Science (LICS ’96), 1996.

[24] David S. Hirshfeld. Mathematical programming and the planning, scheduling,

and control of process operations. Computer Aided Process Operations, 1987.

[25] M. W. Hofbaur and B. C. Williams. Hybrid estimation of complex systems.

IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,

2004.

[26] Andreas Hofmann. Safe execution of bipedal walking tasks from biomechanical

principles. Master’s thesis, MIT, 2005.

[27] I hsiang Shu. Enabling fast flexible planning through incremental temporal rea-

soning. Master’s thesis, MIT, 2002.

[28] Henry Kautz, David McAllester, and Bart Selman. Pushing the envelope: Plan-

ning, propositional logic, and stochastic search. In Proceedings of AAAI-96,

1996.

[29] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of

ECAI-92, 1992.

[30] Henry Kautz and Bart Selman. Encoding plans in propositional logic. In Pro-

ceedings of KR-96, 1996.

[31] Henry Kautz and Bart Selman. Unifying sat-based and graph-based planning.

In Proceedings of IJCAI-99, 1999.

151

[32] P. Kim, B.C. Williams, and M. Abramson. Executing reactive, model-based

programs through graph-based temporal planning. In Proceedings of the 17th

International Joint Conference on Artificial Intelligence (IJCAI-01), 2001.

[33] Philip K. Kim. Model-based planning for coordinated air vehicle missions. Mas-

ter’s thesis, MIT, 2000.

[34] Raj Krishnan. Solving hybrid decision-control problems through conflict-directed

branch and bound. Master’s thesis, MIT, 2004.

[35] Benjamin Kuipers and Karl Åström. The composition of heterogeneous control

laws. In Proceedings of the 1991 American Control Conference (AAC-91), June

1991.

[36] Benjamin Kuipers and Karl Åström. The composition and validation of hetero-

geneous control laws. Automatica, 30(2):233–249, 1994.

[37] Benjamin Kuipers and Subramanian Ramamoorthy. Qualitative modeling and

heterogeneous control of global system behavior. In Proceedings of the 2002

International Workshop on Hybrid Systems: Computation and Control (HSCC-

02), 2002.

[38] A.B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability anal-

ysis. Optimization: methods and software, 9 2000.

[39] Yoshiaki Kuwata. Real-time trajectory design for unmanned aerial vehicles using

receding horizon control. Master’s thesis, MIT, 2003.

[40] Gerardo Lafferriere and ChrisMiller. Uniform reachability algorithms. In Pro-

ceedings of the 2000 International Workshop on Hybrid Systems: Computation

and Control (HSCC-00), pages 215–228, 2000.

[41] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proceed-

ings of the IEEE International Conference on Robotics and Automation, 1999.

152

[42] Hui Li. Generalized conflict learning for hybrid discrete linear optimization.

Master’s thesis, MIT, 2005.

[43] Hui Li and Brian C. Williams. Efficiently solving hybrid logic/optimization prob-

lems through generalized conflict learning. ICAPS Workshop ‘Plan Execution:

A Reality Check’. http://mers.csail.mit.edu/mers-publications.htm, 2005.

[44] D. Long and M. Fox. Exploiting a graphplan framework in temporal planning.

In Proceedings of ICAPS’03, pages 51–62, 2003.

[45] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-

free paths among polyhedral obstacles. Commun. ACM, 22(10):560–570, 1979.

[46] Matthew T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.

[47] G. Mitra, I. Hai, and M.T. Hajian. A distributed processing algorithm for solving

integer programs using a cluster of workstations. Parallel Computing, 3(6), 6

1997.

[48] P. Morris and N. Muscettola. Execution of temporal plans with uncertainty. In

Proceedings of AAAI-2000, pages 491–496, 2000.

[49] P. Morris, N. Muscettola, and I. Tsamardinos. Reformulating temporal plans for

efficient execution. In Proceedings of the International Conference on Principles

of Knowledge Representation and Reasoning, pages 444–452, 1998.

[50] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal

uncertainty. In Proceedings of IJCAI-01, pages 494–502, 2001.

[51] Larry Popiel, Ted Matsko, and Coleman Brosilow. Coordinated control. In

Chemical Process Control (CPC-III), 1986.

[52] A. I. Propoi. Use of linear programming methods for synthesizing sampled-data

automatic systems. Automation and Remote Control, 24(7):837–844, 1963.

153

[53] Subramanian Ramamoorthy and Benjamin Kuipers. Qualitative heterogeneous

control of higher oder systems. In Proceedings of the 2003 International Work-

shop on Hybrid Systems: Computation and Control (HSCC-03), 2003.

[54] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Algorithmic control of indus-

trial processes. In Proceedings of the 4th IFAC Symposium on Identification and

System Parameter Estimation, pages 1119–1167, 1976.

[55] A. Richards, J. How, T. Schouwenaars, and E. Féron. Plume avoidance maneuver

planning using mixed integer linear programming. In Proceedings of AIAA-2001,

2001.

[56] Arthur Richards and Jonathan How. Model predictive control of vehicle maneu-

vers with guaranteed completion time and robust feasibility. In Proceedings of

the 2003 American Control Conference, 2003.

[57] Tom Schouwenaars, Bart De Moor, Eric Féron, and Jonathan How. Mixed

integer programming for multi-vehicle path planning. In Proceedings of the ECC

Conference, 2001.

[58] John Stedl. Managing temporal uncertainty under limited communication: A

formal model of tight and loose team communication. Master’s thesis, MIT,

2004.

[59] Ashish Tiwari. Approximate reachability for linear systems. In Proceedings of

the Sixth International Workshop on Hybrid Systems: Computation and Control

(HSCC), pages 514–525, 2003.

[60] Ioannis Tsamardinos, Martha E. Pollack, and Sailesh Ramakrishnan. Assessing

the probability of legal execution of plans with temporal uncertainty. In Proceed-

ings of the 13th International Conference on Automatic Planning and Scheduling,

2003.

154

[61] T. Vidal and M. Ghallab. Dealing with uncertain durations in temporal con-

straint networks dedicated to planning. In Proceedings of the 12th European

Conference on Artificial Intelligence (ECAI-96), pages 48–52, 1996.

[62] M. Villain and H. Kautz. Constraint propagation algorithms for temporal rea-

soning. In Proceedings of the AAAI-86, pages 377–382, 1986.

[63] Aisha Walcott. Unifying model-based programming and randomized path plan-

ning though optimal search. Master’s thesis, MIT, 2004.

[64] Andreas Frederik Wehowsky. Safe distributed coordination of heterogeneous

robots through dynamic simple temporal networks. Master’s thesis, MIT, 2003.

[65] D. E. Wilkins and K. L. Myers. A common knowledge representation for plan

generation and reactive execution. Journal of Logic and Computation, 5(6):731–

761, December 1995.

[66] B. C. Williams, Michel Ingham, Seung H. Chung, and Paul H. Elliott. Model-

based programming of intelligent embedded systems and robotic space explorers.

In Proceedings of the IEEE: Special Issue on Modeling and Design of Embedded

Software, 2003.

[67] Brian C. Williams and P. Pandurang Nayak. Immobile robots: Artificial in-

telligence in the new millennium. Cover article of AI Magazine, 17(3):16–35,

1996.

155

