6,607 research outputs found

    Qualitative Characterization of Deforming Surfaces

    Get PDF

    Dirichlet sigma models and mean curvature flow

    Full text link
    The mean curvature flow describes the parabolic deformation of embedded branes in Riemannian geometry driven by their extrinsic mean curvature vector, which is typically associated to surface tension forces. It is the gradient flow of the area functional, and, as such, it is naturally identified with the boundary renormalization group equation of Dirichlet sigma models away from conformality, to lowest order in perturbation theory. D-branes appear as fixed points of this flow having conformally invariant boundary conditions. Simple running solutions include the paper-clip and the hair-pin (or grim-reaper) models on the plane, as well as scaling solutions associated to rational (p, q) closed curves and the decay of two intersecting lines. Stability analysis is performed in several cases while searching for transitions among different brane configurations. The combination of Ricci with the mean curvature flow is examined in detail together with several explicit examples of deforming curves on curved backgrounds. Some general aspects of the mean curvature flow in higher dimensional ambient spaces are also discussed and obtain consistent truncations to lower dimensional systems. Selected physical applications are mentioned in the text, including tachyon condensation in open string theory and the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure

    Strain localization driven by thermal decomposition during seismic shear

    Get PDF
    Field and laboratory observations show that shear deformation is often extremely localized at seismic slip rates, with a typical deforming zone width on the order of a few tens of microns. This extreme localization can be understood in terms of thermally driven weakening mechanisms. A zone of initially high strain rate will experience more shear heating and thus weaken faster, making it more likely to accommodate subsequent deformation. Fault zones often contain thermally unstable minerals such as clays or carbonates, which devolatilize at the high temperatures attained during seismic slip. In this paper, we investigate how these thermal decomposition reactions drive strain localization when coupled to a model for thermal pressurization of in situ groundwater. Building on Rice et al. (2014), we use a linear stability analysis to predict a localized zone thickness that depends on a combination of hydraulic, frictional, and thermochemical properties of the deforming fault rock. Numerical simulations show that the onset of thermal decomposition drives additional strain localization when compared with thermal pressurization alone and predict localized zone thicknesses of ∼7 and ∼13 μm for lizardite and calcite, respectively. Finally we show how thermal diffusion and the endothermic reaction combine to limit the peak temperature of the fault and that the pore fluid released by the reaction provides additional weakening of ∼20–40% of the initial strength

    Models of dynamic extraction of lipid tethers from cell membranes

    Full text link
    When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this processes by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that they can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers.Comment: 16 pages, 7 figure

    Graph theoretical approaches for the characterization of damage in hierarchical materials

    Full text link
    We discuss the relevance of methods of graph theory for the study of damage in simple model materials described by the random fuse model. While such methods are not commonly used when dealing with regular random lattices, which mimic disordered but statistically homogeneous materials, they become relevant in materials with microstructures that exhibit complex multi-scale patterns. We specifically address the case of hierarchical materials, whose failure, due to an uncommon fracture mode, is not well described in terms of either damage percolation or crack nucleation-and-growth. We show that in these systems, incipient failure is accompanied by an increase in eigenvector localization and a drop in topological dimension. We propose these two novel indicators as possible candidates to monitor a system in the approach to failure. As such, they provide alternatives to monitoring changes in the precursory avalanche activity, which is often invoked as a candidate for failure prediction in materials which exhibit critical-like behavior at failure, but may not work in the context of hierarchical materials which exhibit scale-free avalanche statistics even very far from the critical load.Comment: 12 pages, 6 figure

    Dynamics of filaments and membranes in a viscous fluid

    Full text link
    Motivated by the motion of biopolymers and membranes in solution, this article presents a formulation of the equations of motion for curves and surfaces in a viscous fluid. We focus on geometrical aspects and simple variational methods for calculating internal stresses and forces, and we derive the full nonlinear equations of motion. In the case of membranes, we pay particular attention to the formulation of the equations of hydrodynamics on a curved, deforming surface. The formalism is illustrated by two simple case studies: (1) the twirling instability of straight elastic rod rotating in a viscous fluid, and (2) the pearling and buckling instabilities of a tubular liposome or polymersome.Comment: 26 pages, 12 figures, to be published in Reviews of Modern Physic
    • …
    corecore