12 research outputs found

    Physarum Powered Differentiable Linear Programming Layers and Applications

    Full text link
    Consider a learning algorithm, which involves an internal call to an optimization routine such as a generalized eigenvalue problem, a cone programming problem or even sorting. Integrating such a method as layers within a trainable deep network in a numerically stable way is not simple -- for instance, only recently, strategies have emerged for eigendecomposition and differentiable sorting. We propose an efficient and differentiable solver for general linear programming problems which can be used in a plug and play manner within deep neural networks as a layer. Our development is inspired by a fascinating but not widely used link between dynamics of slime mold (physarum) and mathematical optimization schemes such as steepest descent. We describe our development and demonstrate the use of our solver in a video object segmentation task and meta-learning for few-shot learning. We review the relevant known results and provide a technical analysis describing its applicability for our use cases. Our solver performs comparably with a customized projected gradient descent method on the first task and outperforms the very recently proposed differentiable CVXPY solver on the second task. Experiments show that our solver converges quickly without the need for a feasible initial point. Interestingly, our scheme is easy to implement and can easily serve as layers whenever a learning procedure needs a fast approximate solution to a LP, within a larger network

    Efficient Relaxations for Dense CRFs with Sparse Higher Order Potentials

    Full text link
    Dense conditional random fields (CRFs) have become a popular framework for modelling several problems in computer vision such as stereo correspondence and multi-class semantic segmentation. By modelling long-range interactions, dense CRFs provide a labelling that captures finer detail than their sparse counterparts. Currently, the state-of-the-art algorithm performs mean-field inference using a filter-based method but fails to provide a strong theoretical guarantee on the quality of the solution. A question naturally arises as to whether it is possible to obtain a maximum a posteriori (MAP) estimate of a dense CRF using a principled method. Within this paper, we show that this is indeed possible. We will show that, by using a filter-based method, continuous relaxations of the MAP problem can be optimised efficiently using state-of-the-art algorithms. Specifically, we will solve a quadratic programming (QP) relaxation using the Frank-Wolfe algorithm and a linear programming (LP) relaxation by developing a proximal minimisation framework. By exploiting labelling consistency in the higher-order potentials and utilising the filter-based method, we are able to formulate the above algorithms such that each iteration has a complexity linear in the number of classes and random variables. The presented algorithms can be applied to any labelling problem using a dense CRF with sparse higher-order potentials. In this paper, we use semantic segmentation as an example application as it demonstrates the ability of the algorithm to scale to dense CRFs with large dimensions. We perform experiments on the Pascal dataset to indicate that the presented algorithms are able to attain lower energies than the mean-field inference method

    Efficient inference for fully-connected CRFs with stationarity

    Full text link
    The Conditional Random Field (CRF) is a popular tool for object-based image segmentation. CRFs used in prac-tice typically have edges only between adjacent image pix-els. To represent object relationship statistics beyond adja-cent pixels, prior work either represents only weak spatial information using the segmented regions, or encodes only global object co-occurrences. In this paper, we propose a unified model that augments the pixel-wise CRFs to cap-ture object spatial relationships. To this end, we use a fully connected CRF, which has an edge for each pair of pixels. The edge potentials are defined to capture the spatial in-formation and preserve the object boundaries at the same time. Traditional inference methods, such as belief propa-gation and graph cuts, are impractical in such a case where billions of edges are defined. Under only one assumption that the spatial relationships among different objects only depend on their relative positions (spatially stationary), we develop an efficient inference algorithm that converges in a few seconds on a standard resolution image, where belief propagation takes more than one hour for a single iteration. 1

    Probabilistic Inference Based Message-Passing for Resource Constrained DCOPs

    Get PDF
    Distributed constraint optimization (DCOP) is an important framework for coordinated multiagent decision making. We address a practically use-ful variant of DCOP, called resource-constrained DCOP (RC-DCOP), which takes into account agents ’ consumption of shared limited resources. We present a promising new class of algorithm for RC-DCOPs by translating the underlying co-ordination problem to probabilistic inference. Us-ing inference techniques such as expectation-maximization and convex optimization machinery, we develop a novel convergent message-passing al-gorithm for RC-DCOPs. Experiments on standard benchmarks show that our approach provides bet-ter quality than previous best DCOP algorithms and has much lower failure rate. Comparisons against an efficient centralized solver show that our ap-proach provides near-optimal solutions, and is sig-nificantly faster on larger instances.

    Message Passing Algorithms for MAP Estimation using DC Programming

    Get PDF
    We address the problem of finding the most likely assignment or MAP estimation in a Markov random field. We analyze the linear programming formulation of MAP through the lens of difference of convex functions (DC) programming, and use the concaveconvex procedure (CCCP) to develop efficient message-passing solvers. The resulting algorithms are guaranteed to converge to a global optimum of the well-studied local polytope, an outer bound on the MAP marginal polytope. To tighten the outer bound, we show how to combine it with the mean-field based inner bound and, again, solve it using CCCP. We also identify a useful relationship between the DC formulations and some recently proposed algorithms based on Bregman divergence. Experimentally, this hybrid approach produces optimal solutions for a range of hard OR problems and nearoptimal solutions for standard benchmarks.

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc
    corecore