309 research outputs found

    Relaxations for inference in restricted Boltzmann machines

    Full text link
    We propose a relaxation-based approximate inference algorithm that samples near-MAP configurations of a binary pairwise Markov random field. We experiment on MAP inference tasks in several restricted Boltzmann machines. We also use our underlying sampler to estimate the log-partition function of restricted Boltzmann machines and compare against other sampling-based methods.Comment: ICLR 2014 workshop track submissio

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    Scalable Semidefinite Relaxation for Maximum A Posterior Estimation

    Full text link
    Maximum a posteriori (MAP) inference over discrete Markov random fields is a fundamental task spanning a wide spectrum of real-world applications, which is known to be NP-hard for general graphs. In this paper, we propose a novel semidefinite relaxation formulation (referred to as SDR) to estimate the MAP assignment. Algorithmically, we develop an accelerated variant of the alternating direction method of multipliers (referred to as SDPAD-LR) that can effectively exploit the special structure of the new relaxation. Encouragingly, the proposed procedure allows solving SDR for large-scale problems, e.g., problems on a grid graph comprising hundreds of thousands of variables with multiple states per node. Compared with prior SDP solvers, SDPAD-LR is capable of attaining comparable accuracy while exhibiting remarkably improved scalability, in contrast to the commonly held belief that semidefinite relaxation can only been applied on small-scale MRF problems. We have evaluated the performance of SDR on various benchmark datasets including OPENGM2 and PIC in terms of both the quality of the solutions and computation time. Experimental results demonstrate that for a broad class of problems, SDPAD-LR outperforms state-of-the-art algorithms in producing better MAP assignment in an efficient manner.Comment: accepted to International Conference on Machine Learning (ICML 2014

    Worst-case Optimal Submodular Extensions for Marginal Estimation

    Get PDF
    Submodular extensions of an energy function can be used to efficiently compute approximate marginals via variational inference. The accuracy of the marginals depends crucially on the quality of the submodular extension. To identify the best possible extension, we show an equivalence between the submodular extensions of the energy and the objective functions of linear programming (LP) relaxations for the corresponding MAP estimation problem. This allows us to (i) establish the worst-case optimality of the submodular extension for Potts model used in the literature; (ii) identify the worst-case optimal submodular extension for the more general class of metric labeling; and (iii) efficiently compute the marginals for the widely used dense CRF model with the help of a recently proposed Gaussian filtering method. Using synthetic and real data, we show that our approach provides comparable upper bounds on the log-partition function to those obtained using tree-reweighted message passing (TRW) in cases where the latter is computationally feasible. Importantly, unlike TRW, our approach provides the first practical algorithm to compute an upper bound on the dense CRF model.Comment: Accepted to AISTATS 201

    Efficient Relaxations for Dense CRFs with Sparse Higher Order Potentials

    Full text link
    Dense conditional random fields (CRFs) have become a popular framework for modelling several problems in computer vision such as stereo correspondence and multi-class semantic segmentation. By modelling long-range interactions, dense CRFs provide a labelling that captures finer detail than their sparse counterparts. Currently, the state-of-the-art algorithm performs mean-field inference using a filter-based method but fails to provide a strong theoretical guarantee on the quality of the solution. A question naturally arises as to whether it is possible to obtain a maximum a posteriori (MAP) estimate of a dense CRF using a principled method. Within this paper, we show that this is indeed possible. We will show that, by using a filter-based method, continuous relaxations of the MAP problem can be optimised efficiently using state-of-the-art algorithms. Specifically, we will solve a quadratic programming (QP) relaxation using the Frank-Wolfe algorithm and a linear programming (LP) relaxation by developing a proximal minimisation framework. By exploiting labelling consistency in the higher-order potentials and utilising the filter-based method, we are able to formulate the above algorithms such that each iteration has a complexity linear in the number of classes and random variables. The presented algorithms can be applied to any labelling problem using a dense CRF with sparse higher-order potentials. In this paper, we use semantic segmentation as an example application as it demonstrates the ability of the algorithm to scale to dense CRFs with large dimensions. We perform experiments on the Pascal dataset to indicate that the presented algorithms are able to attain lower energies than the mean-field inference method

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc
    • …
    corecore