2,158 research outputs found

    PARABOLIC BLENDING SURFACES ALONG POLYHEDRON EDGES

    Get PDF
    In this paper parabolic blending surfaces are defined along a chain of polyhedron edges. The profile curve of each sweep surface generated for a given edge is a conic section, and every point of it moves on a conic section around a vertex. According to this, the patches at the corners are given in rational biquadratic form and they join to the cylindrical surfaces replacing the edges with 1st order continuity

    Manifold-based isogeometric analysis basis functions with prescribed sharp features

    Get PDF
    We introduce manifold-based basis functions for isogeometric analysis of surfaces with arbitrary smoothness, prescribed C0C^0 continuous creases and boundaries. The utility of the manifold-based surface construction techniques in isogeometric analysis was demonstrated in Majeed and Cirak (CMAME, 2017). The respective basis functions are derived by combining differential-geometric manifold techniques with conformal parametrisations and the partition of unity method. The connectivity of a given unstructured quadrilateral control mesh in R3\mathbb R^3 is used to define a set of overlapping charts. Each vertex with its attached elements is assigned a corresponding conformally parametrised planar chart domain in R2\mathbb R^2, so that a quadrilateral element is present on four different charts. On the collection of unconnected chart domains, the partition of unity method is used for approximation. The transition functions required for navigating between the chart domains are composed out of conformal maps. The necessary smooth partition of unity, or blending, functions for the charts are assembled from tensor-product B-spline pieces and require in contrast to earlier constructions no normalisation. Creases are introduced across user tagged edges of the control mesh. Planar chart domains that include creased edges or are adjacent to the domain boundary require special local polynomial approximants. Three different types of chart domain geometries are necessary to consider boundaries and arbitrary number and arrangement of creases. The new chart domain geometries are chosen so that it becomes trivial to establish local polynomial approximants that are always C0C^0 continuous across tagged edges. The derived non-rational manifold-based basis functions are particularly well suited for isogeometric analysis of Kirchhoff-Love thin shells with kinks

    Multisided generalisations of Gregory patches

    Get PDF
    We propose two generalisations of Gregory patches to faces of any valency by using generalised barycentric coordinates in combination with two kinds of multisided BĂ©zier patches. Our first construction builds on S-patches to generalise triangular Gregory patches. The local construction of Chiyokura and Kimura providing G1 continuity between adjoining BĂ©zier patches is generalised so that the novel Gregory S-patches of any valency can be smoothly joined to one another. Our second construction makes a minor adjustment to the generalised BĂ©zier patch structure to allow for cross-boundary derivatives to be defined independently per side. We show that the corresponding blending functions have the inherent ability to blend ribbon data much like the rational blending functions of Gregory patches. Both constructions take as input a polygonal mesh with vertex normals and provide G1 surfaces interpolating the input vertices and normals. Due to the full locality of the methods, they are well suited for geometric modelling as well as computer graphics applications relying on hardware tessellation

    Gn blending multiple surfaces in polar coordinates

    Get PDF
    International audienceThis paper proposes a method of Gn blending multiple parametric surfaces in polar coordinates. It models the geometric continuity conditions of parametric surfaces in polar coordinates and presents a mechanism of converting a Cartesian parametric surface into its polar coordinate form. The basic idea is first to reparameterize the parametric blendees into the form of polar coordinates. Then they are blended simultaneously by a basis function in the complex domain. To extend its compatibility, we also propose a method of converting polar coordinate blending surface into N NURBS patches. One application of this technique is to fill N-sided holes. Examples are presented to show its feasibility and practicability

    Continuous boundary elements for potential problems

    Get PDF
    Imperial Users onl
    • …
    corecore