1,137 research outputs found

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual â„“\ell1 linearly constrained Lagrangian (pdâ„“\ell1-LCL) method

    OSQP: An Operator Splitting Solver for Quadratic Programs

    Full text link
    We present a general-purpose solver for convex quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix at almost every iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It can be configured to be division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior-point methods, and sometimes much more when factorization caching or warm start is used. OSQP has already shown a large impact with tens of thousands of users both in academia and in large corporations

    Local quadratic convergence of polynomial-time interior-point methods for conic optimization problems

    Get PDF
    In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following predictor-corrector schemes which work only in the dual space. They are based on an easily computable gradient proximity measure, which ensures an automatic transformation of the global linear rate of convergence to the local quadratic one under some mild assumptions. Our step-size procedure for the predictor step is related to the maximum step size (the one that takes us to the boundary). It appears that in order to obtain local superlinear convergence, we need to tighten the neighborhood of the central path proportionally to the current duality gapconic optimization problem, worst-case complexity analysis, self-concordant barriers, polynomial-time methods, predictor-corrector methods, local quadratic convergence
    • …
    corecore