593 research outputs found

    Pre-Congestion Notification (PCN) Architecture

    Get PDF
    This document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established, inelastic flows within a single Diffserv domain.\u

    Design and Implementation of a Measurement-Based Policy-Driven Resource Management Framework For Converged Networks

    Full text link
    This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.Comment: in Ictact Journal On Communication Technology: Special Issue On Next Generation Wireless Networks And Applications, June 2011, Volume 2, Issue 2, Issn: 2229-6948(Online

    Implementation and Performance Evaluation of an NGN prototype using WiMax as an Access Technology

    Get PDF
    Telecommunications networks have evolved to IP-based networks, commonly known as Next Generation Networks (NGN). The biggest challenge in providing high quality realtime multimedia applications is achieving a Quality of Service (QoS) consistent with user expectations. One of the key additional factors affecting QoS is the existence of different QoS mechanisms on the heterogeneous technologies used on NGN platforms. This research investigates the techniques used to achieve consistent QoS on network technologies that use different QoS techniques. Numerous proposals for solving the end-to-end QoS problem in IP networks have adopted policy-based management, use of signalling protocols for communicating applications QoS requirements across different Network Elements and QoS provisioning in Network Elements. Such solutions are dependent on the use of traffic classification and knowledge of the QoS requirements of applications and services on the networks. This research identifies the practical difficulties involved in meeting the QoS requirements of network traffic between WiMax and an IP core network. In the work, a solution based on the concept of class-of-service mapping is proposed. In the proposed solution, QoS is implemented on the two networks and the concept of class-of-service mapping is used to integrate the two QoS systems. This essentially provides consistent QoS to applications as they traverse the two network domains and hence meet end-user QoS expectations. The work is evaluated through a NGN prototype to determine the capabilities of the networks to deliver real-time media that meets user expectations

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Selected Issues of QoS Provision in Heterogenous Military Networks

    Get PDF
    Tactical ad-hoc networks are evolving today towards complex heterogeneous networks in terms of architecture, protocols and security. Due to the difference in network resources and reliability, end-to-end quality of service provisioning becomes very challenging. If we also take into account communication issues such as unpredictable connectivity, preferential forwarding for special traffic classes, intermittency due to node or communication link failure, the problem is further aggravated.In this article, we examine the major challenges that must be solved in order to provide efficient QoS provisioning in the heterogeneous network. Finally we describe QoS-aware mechanisms for inter-domain and intra-domain heterogeneous networks, also including real-time services provision in highly mobile environments.

    Route selection impacts on achieving enhanced IMS QoS

    Get PDF
    ArticleThe different planes in the IMS interact via specific reference points to deliver multimedia services to the user. QoS provisioning for IMS communications has been standardized for access networks only, with the assumption of an over provisioned IP core. Effective provisioning of multimedia services requires performance guarantee along the complete path of the sessions. End-to-end QoS in IP networks is affected by the route traversed by the user traffic. Moreover QoS guarantees in one ISP domain are not effective for transit traffic exiting the domain. QoS extensions to exterior gateway routing protocols have been proposed to transfer route QoS information beyond one autonomous system (domain). This paper explores options for mapping inter-domain QoS information learnt on the media plane into control plane session information for IMS QoS control. Through testbed evaluations we show the effect of routing on delays experienced in IMS communications.The different planes in the IMS interact via specific reference points to deliver multimedia services to the user. QoS provisioning for IMS communications has been standardized for access networks only, with the assumption of an over provisioned IP core. Effective provisioning of multimedia services requires performance guarantee along the complete path of the sessions. End-to-end QoS in IP networks is affected by the route traversed by the user traffic. Moreover QoS guarantees in one ISP domain are not effective for transit traffic exiting the domain. QoS extensions to exterior gateway routing protocols have been proposed to transfer route QoS information beyond one autonomous system (domain). This paper explores options for mapping inter-domain QoS information learnt on the media plane into control plane session information for IMS QoS control. Through testbed evaluations we show the effect of routing on delays experienced in IMS communications

    A QoS-enable solution for mobile environments

    Get PDF
    This paper addresses the problem of designing a suitable Quality of Service (QoS) solution for mobile environments. The proposed solution deploys a dynamic QoS provisioning scheme able to deal with service protection during node mobility within a local domain, presenting extensions to deal with global mobility. The dynamic QoS provisioning encompasses a QoS architecture that uses explicit and implicit setup mechanisms to request resources from the network for the purpose of supporting control plane functions and optimizing resource allocation. Abstract--- For efficient resource allocation, the resource and mobility management schemes have been coupled resulting in a QoS/Mobility aware network architecture able to react proactively to mobility events. Both management schemes have been optimized to work together, in order to support seamless handovers for mobile users running real-time applications. Abstract--- The analysis of performance improvement and the model parametrization of the proposed solution have been evaluated using simulation. Simulation results show that the solution avoids network congestion and also the starvation of less priority DiffServ classes. Moreover, the results also show that bandwidth utilization for priority classes is levered and that the QoS offered to Mobile Node's (MN's) applications, within each DiffServ class, is maintained in spite of MN mobility. Abstract--- The proposed model is simple, easy to implement and takes into account the mobile Internet requirements. Simulation results show that this new methodology is effective and able to provide QoS services adapted to application requests

    A QoS-enabled resource management scheme for F-HMIPv6 micro mobility approach

    Get PDF
    In the near future, wireless networks will certainly run real-time applications with special Quality of Service (QoS) requirements. In this context micro mobility management schemes such as Fast Handovers over Hierarchical Mobile IPv6 (F-HMIPv6) will be a useful tool in reducing Mobile IPv6 (MIPv6) handover disruption and thereby to improve delay and losses. However, F-HMIPv6 alone does not support QoS requirements for real-time applications. Therefore, in order to accomplish this goal, a novel resource management scheme for the Differentiated Services (DiffServ) QoS model is proposed to be used as an add-on to F-HMIPv6. The new resource management scheme combines the F-HMIPv6 functionalities with the DiffServ QoS model and with network congestion control and dynamic reallocation mechanisms in order to accommodate different QoS traffic requirements. This new scheme based on a Measurement-Based Admission Control (MBAC) algorithm is effective, simple, scalable and avoids the well known traditional resource reservation issues such as state maintenance, signaling overhead and processing load. By means of the admission evaluation of new flows and handover flows, it is able to provide the desired QoS requirements for new flows while preserving the QoS of existing ones. The evaluated results show that all QoS metrics analyzed were significantly improved with the new architecture indicating that it is able to provide a highly predictive QoS support to F-HMIPv6
    • …
    corecore