313 research outputs found

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications

    Techno-economical Analysis of Indoor Enterprise Solutions

    Get PDF

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    RIS-assisted Scheduling for High-Speed Railway Secure Communications

    Full text link
    With the rapid development of high-speed railway systems and railway wireless communication, the application of ultra-wideband millimeter wave band is an inevitable trend. However, the millimeter wave channel has large propagation loss and is easy to be blocked. Moreover, there are many problems such as eavesdropping between the base station (BS) and the train. As an emerging technology, reconfigurable intelligent surface (RIS) can achieve the effect of passive beamforming by controlling the propagation of the incident electromagnetic wave in the desired direction.We propose a RIS-assisted scheduling scheme for scheduling interrupted transmission and improving quality of service (QoS).In the propsed scheme, an RIS is deployed between the BS and multiple mobile relays (MRs). By jointly optimizing the beamforming vector and the discrete phase shift of the RIS, the constructive interference between direct link signals and indirect link signals can be achieved, and the channel capacity of eavesdroppers is guaranteed to be within a controllable range. Finally, the purpose of maximizing the number of successfully scheduled tasks and satisfying their QoS requirements can be practically realized. Extensive simulations demonstrate that the proposed scheme has superior performance regarding the number of completed tasks and the system secrecy capacity over four baseline schemes in literature.Comment: 15 pages, 10 figures, to appear in IEEE Transactions on Vehicular Technolog
    corecore