290 research outputs found

    A software-defined architecture for next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are undergoing fundamental changes and many established concepts are being revisited. New emerging paradigms, such as Software-Defined Networking (SDN), Mobile Cloud Computing (MCC), Network Function Virtualization (NFV), Internet of Things (IoT),and Mobile Social Networking (MSN), bring challenges in the design of cellular networks architectures. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a scalable and efficient way. In this paper, first we discuss the limitations of the current LTE architecture. Second, driven by the new communication needs and by the advances in aforementioned areas, we propose a new architecture for next generation cellular networks. Some of its characteristics include support for distributed content routing, Heterogeneous Networks(HetNets) and multiple Radio Access Technologies (RATs). Finally, we present simulation results which show that significant backhaul traffic savings can be achieved by implementing caching and routing functions at the network edge

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    On the security of software-defined next-generation cellular networks

    Get PDF
    In the recent years, mobile cellular networks are ndergoing fundamental changes and many established concepts are being revisited. Future 5G network architectures will be designed to employ a wide range of new and emerging technologies such as Software Defined Networking (SDN) and Network Functions Virtualization (NFV). These create new virtual network elements each affecting the logic of the network management and operation, enabling the creation of new generation services with substantially higher data rates and lower delays. However, new security challenges and threats are also introduced. Current Long-Term Evolution (LTE) networks are not able to accommodate these new trends in a secure and reliable way. At the same time, novel 5G systems have proffered invaluable opportunities of developing novel solutions for attack prevention, management, and recovery. In this paper, first we discuss the main security threats and possible attack vectors in cellular networks. Second, driven by the emerging next-generation cellular networks, we discuss the architectural and functional requirements to enable appropriate levels of security

    A NOvel radio multiservice adaptive network architecture for 5G networks

    Get PDF
    Proceeding of: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring)This paper proposes a conceptually novel, adaptive and future-proof 5G mobile network architecture. The proposed architecture enables unprecedented levels of network customisability, ensuring stringent performance, security, cost and energy requirements to be met; as well as providing an API-driven architectural openness, fuelling economic growth through over-the-top innovation. Not following the 'one system fits all services' paradigm of current architectures, the architecture allows for adapting the mechanisms executed for a given service to the specific service requirements, resulting in a novel service- and context-dependent adaptation of network functions paradigm. The technical approach is based on the innovative concept of adaptive (de)composition and allocation of mobile network functions, which flexibly decomposes the mobile network functions and places the resulting functions in the most appropriate location. By doing so, access and core functions no longer (necessarily) reside in different locations, which is exploited to jointly optimize their operation when possible. The adaptability of the architecture is further strengthened by the innovative software-defined mobile network control and mobile multi-tenancy concepts
    • …
    corecore