1,216,336 research outputs found

    Identification and quantification of cell gas evolution in rigid polyurethane foams by novel GCMS methodology

    Get PDF
    Producción CientíficaThis paper presents a new methodology based on gas chromatography-mass spectrometry (GCMS) in order to separate and quantify the gases presented inside the cells of rigid polyurethane (RPU) foams. To demonstrate this novel methodology, the gas composition along more than three years of aging is herein determined for two samples: a reference foam and foam with 1.5 wt% of talc. The GCMS method was applied, on one hand, for the accurate determination of C5H10 and CO2 cell gases used as blowing agents and, on the other hand, for N2 and O2 air gases that diffuse rapidly from the surrounding environment into foam cells. GCMS results showed that CO2 leaves foam after 2.5 month (from 21% to 0.03% for reference foam and from 17% to 0.03% for foam with 1.5% talc). C5H10 deviates during 3.5 months (from 28% up to 39% for reference foam and from 29% up to 36% for foam with talc), then it starts to leave the foam and after 3.5 year its content is 13% for reference and 10% for foam with talc. Air diffuses inside the cells faster for one year (from 51% up to 79% for reference and from 54% up to 81% for foam with talc) and then more slowly for 3.5 years (reaching 86% for reference and 90% for foam with talc). Thus, the fast and simple presented methodology provides valuable information to understand the long-term thermal conductivity of the RPU foams.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (grants MAT2015-69234-R and RTC-2016-5285-5)Junta de Castilla y Leon (grant VA275P18)Agencia austriaca para la promoción de la investigación (grant 850697

    The influence of tense in adverbial quantification

    Get PDF
    We argue that there is a crucial difference between determiner and adverbial quantification. Following Herburger [2000] and von Fintel [1994], we assume that determiner quantifiers quantify over individuals and adverbial quantifiers over eventualities. While it is usually assumed that the semantics of sentences with determiner quantifiers and those with adverbial quantifiers basically come out the same, we will show by way of new data that quantification over events is more restricted than quantification over individuals. This is because eventualities in contrast to individuals have to be located in time which is done using contextual information according to a pragmatic resolution strategy. If the contextual information and the tense information given in the respective sentence contradict each other, the sentence is uninterpretable. We conclude that this is the reason why in these cases adverbial quantification, i.e. quantification over eventualities, is impossible whereas quantification over individuals is fine

    Optimal Uncertainty Quantification

    Get PDF
    We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call Optimal Uncertainty Quantification (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as extreme values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions, they have finite-dimensional reductions. As an application, we develop Optimal Concentration Inequalities (OCI) of Hoeffding and McDiarmid type. Surprisingly, contrary to the classical sensitivity analysis paradigm, these results show that uncertainties in input parameters do not necessarily propagate to output uncertainties. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact, suggesting the feasibility of the framework for important complex systems

    Optimal Uncertainty Quantification

    Get PDF
    We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call \emph{Optimal Uncertainty Quantification} (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions they have finite-dimensional reductions. As an application, we develop \emph{Optimal Concentration Inequalities} (OCI) of Hoeffding and McDiarmid type. Surprisingly, these results show that uncertainties in input parameters, which propagate to output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the transfer functions (or probability distributions) are imperfectly known. We show how, for hierarchical structures, this phenomenon may lead to the non-propagation of uncertainties or information across scales. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the seismic safety assessment of truss structures, suggesting the feasibility of the framework for important complex systems. The introduction of this paper provides both an overview of the paper and a self-contained mini-tutorial about basic concepts and issues of UQ.Comment: 90 pages. Accepted for publication in SIAM Review (Expository Research Papers). See SIAM Review for higher quality figure

    The Role of Existential Quantification in Scientific Realism

    Get PDF
    Scientific realism holds that the terms in our scientific theories refer and that we should believe in their existence. This presupposes a certain understanding of quantification, namely that it is ontologically committing, which I challenge in this paper. I argue that the ontological loading of the quantifiers is smuggled in through restricting the domains of quantification, without which it is clear to see that quantifiers are ontologically neutral. Once we remove domain restrictions, domains of quantification can include non-existent things, as they do in scientific theorizing. Scientific realism would therefore require redefining without presupposing a view of ontologically committing quantification

    Quantification of Residual Stresses in Electron Beam Welded Fracture Mechanics Specimens

    Get PDF
    Residual stress measurements have been made in a range of electron beam welded samples to study how the weld induced residual stresses redistributed during fabrication of compact tension, C(T), specimens. The samples were manufactured from Type 316H stainless steel in the ex-service material condition and in material which had been preconditioned by inducing 8% plastic strain. Measurements made using neutron diffraction, slitting and the contour method were generally in good agreement and showed residual stress components of up to three times the base material's yield strength existed in the samples. When sectioning a sample to perform the contour method, large elastic deformations occurred at the cut tip due to the large residual stresses present. A correction was applied to the measured surface displacements to account for this deformation. Neutron diffraction measurements were made at various stages of the fabrication process, which showed significant stress redistribution occurred as the welded samples were machined into C(T) specimens. However the tensile stresses near the crack tip of the C(T) specimens remained large and could significantly influence subsequent crack growth tests
    corecore