5,204 research outputs found

    An Energy Efficient MAC Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks

    Get PDF
    The explosive growth in the use of real-time applications on mobile devices has resulted in new challenges to the design of medium access control (MAC) protocols for ad hoc networks. In this paper, we propose an energy efficient cognitive radio (CR) MAC protocol for QoS provisioning called ECRQ-MAC, which integrate the spectrum sensing at physical (PHY) layer and the channel-timeslots allocation at MAC layer. We consider the problem of providing QoS guarantee to CR users as well as to maintain the most efficient use of scarce bandwidth resources. The ECRQ-MAC protocol exploits the advantage of both multiple channels and TDMA, and achieves aggressive power savings by allowing CR users that are not involved in communication to go into sleep mode. The proposed ECRQ-MAC protocol allows CR users to identify and use the unused frequency spectrum of licensed band in a way that constrains the level of interference to the primary users (PUs). Our scheme improves network throughput significantly, especially when the network is highly congested. The simulation results show that our proposed protocol successfully exploits multiple channels and significantly improves network performance by using the licensed spectrum opportunistically and protects QoS provisioning over cognitive radio ad hoc networks

    Adaptive resource allocation for cognitive wireless ad hoc networks

    Get PDF
    Widespread use of resource constrained wireless ad hoc networks requires careful management of the network resources in order to maximize the utilization. In cognitive wireless networks, resources such as spectrum, energy, communication links/paths, time, space, modulation scheme, have to be managed to maintain quality of service (QoS). Therefore in the first paper, a distributed dynamic channel allocation scheme is proposed for multi-channel wireless ad hoc networks with single-radio nodes. The proposed learning scheme adapts the probabilities of selecting each channel as a function of the error in the performance index at each step. Due to frequent changes in topology and flow traffic over time, wireless ad hoc networks require a dynamic routing protocol that adapts to the changes of the network while allocating network resources. In the second paper, approximate dynamic programming (ADP) techniques are utilized to find dynamic routes, while solving discrete-time Hamilton-Jacobi-Bellman (HJB) equation forward-in-time for route cost. The third paper extends the dynamic routing to multi-channel multi-interface networks which are affected by channel uncertainties and fading channels. By the addition of optimization techniques through load balancing over multiple paths and multiple wireless channels, utilization of wireless channels throughout the network is enhanced. Next in the fourth paper, a decentralized game theoretic approach for resource allocation of the primary and secondary users in a cognitive radio networks is proposed. The priorities of the networks are incorporated in the utility and potential functions which are in turn used for resource allocation. The proposed game can be extended to a game among multiple co-existing networks, each with different priority levels --Abstract, page iv

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    corecore