25,375 research outputs found

    A Quantum Game of Life

    Get PDF
    This research describes a three dimensional quantum cellular automaton (QCA) which can simulate all other 3D QCA. This intrinsically universal QCA belongs to the simplest subclass of QCA: Partitioned QCA (PQCA). PQCA are QCA of a particular form, where incoming information is scattered by a fixed unitary U before being redistributed and rescattered. Our construction is minimal amongst PQCA, having block size 2 x 2 x 2 and cell dimension 2. Signals, wires and gates emerge in an elegant fashion.Comment: 13 pages, 10 figures. Final version, accepted by Journ\'ees Automates Cellulaires (JAC 2010)

    Models of Quantum Cellular Automata

    Full text link
    In this paper we present a systematic view of Quantum Cellular Automata (QCA), a mathematical formalism of quantum computation. First we give a general mathematical framework with which to study QCA models. Then we present four different QCA models, and compare them. One model we discuss is the traditional QCA, similar to those introduced by Shumacher and Werner, Watrous, and Van Dam. We discuss also Margolus QCA, also discussed by Schumacher and Werner. We introduce two new models, Coloured QCA, and Continuous-Time QCA. We also compare our models with the established models. We give proofs of computational equivalence for several of these models. We show the strengths of each model, and provide examples of how our models can be useful to come up with algorithms, and implement them in real-world physical devices

    A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

    Full text link
    We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010), Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382

    Error-power tradeoffs in QCA design

    Get PDF
    In this work we present an error-power tradeoff study in a Quantum-dot Cellular Automata (QCA) circuit design. Device parameter variation to optimize performance is a very crucial step in the development of a technology. In this work we vary the maximum kink energy of a QCA circuit to perform an error-power tradeoff study in QCA design. We make use of graphical probabilistic models to estimate polarization errors and non-adiabatic energy dissipated in a clocked QCA circuit and demonstrate the tradeoff studies on the basic QCA circuits such as majority gate and inverter. We also show how this study can be used by comparing two single bit adder designs. The study will be of great use to designers and fabrication scientists to choose the most optimum size and spacing of QCA cells to fabricate QCA logic designs

    Intrinsically universal one-dimensional quantum cellular automata in two flavours

    Full text link
    We give a one-dimensional quantum cellular automaton (QCA) capable of simulating all others. By this we mean that the initial configuration and the local transition rule of any one-dimensional QCA can be encoded within the initial configuration of the universal QCA. Several steps of the universal QCA will then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA. The encoding is linear and hence does not carry any of the cost of the computation. We do this in two flavours: a weak one which requires an infinite but periodic initial configuration and a strong one which needs only a finite initial configuration. KEYWORDS: Quantum cellular automata, Intrinsic universality, Quantum computation.Comment: 27 pages, revtex, 23 figures. V3: The results of V1-V2 are better explained and formalized, and a novel result about intrinsic universality with only finite initial configurations is give

    Quantum Cellular Automata Pseudo-Random Maps

    Full text link
    Quantum computation based on quantum cellular automata (QCA) can greatly reduce the control and precision necessary for experimental implementations of quantum information processing. A QCA system consists of a few species of qubits in which all qubits of a species evolve in parallel. We show that, in spite of its inherent constraints, a QCA system can be used to study complex quantum dynamics. To this aim, we demonstrate scalable operations on a QCA system that fulfill statistical criteria of randomness and explore which criteria of randomness can be fulfilled by operators from various QCA architectures. Other means of realizing random operators with only a few independent operators are also discussed.Comment: 7 pages, 8 figures, submitted to PR
    • 

    corecore