8,198 research outputs found
M_2-rank differences for partitions without repeated odd parts
We prove formulas for the generating functions for M_2-rank differences for
partitions without repeated odd parts. These formulas are in terms of modular
forms and generalized Lambert series.Comment: 18 page
Estimation of magnitudes of debris flows in selected torrential watersheds in Slovenia
In this paper the application of different methods for estimation of magnitudes of rainfall-induced debris flows in 18 torrents in the Upper Sava River valley, NW Slovenia, and in 2 torrents in Pohorje, N Slovenia is described. Additional verification of the methods was performed in the torrential watersheds with active debris flows in the recent past (Predelica and Brusnik in the Soca River basin, W Slovenia). For some of the methods, the knowledge of morphometric characteristics of a torrential watershed, torrential channel and torrential fan is enough. For other methods, a mathematical tool (HEC-HMS) had to be applied in order to develop a hydrologic run-off model of precipitation that can trigger debris flows. Computed debris-flow magnitudes were of the order between 6,500 m(3) and 340,000 m(3). Their values are a function of torrential watershed parameters, such as: watershed area, Melton number, fan gradient, and torrential channel gradient. The investigated fans were classified into 3 groups with regard to the debris-flow hazard: debris-flow fans (hazard exists), torrential fans (no hazard), and transitional fans (debris flows are possible, but with low possibility). A limit between debris-flow fans and torrential fans is proposed: Melton number 0.3 and torrential fan gradient 4 degrees, that is, 7%. Out of 24 investigated torrential fans, 13 fans were classified into the group of debris-flow fans, 5 fans were classified into the group of torrential fans, and the rest 6 fans were classified into the group of transitional fans
The PEP Survey: Infrared Properties of Radio-Selected AGN
By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the
Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from
VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable
redshift estimate, and sub-divided them into star-forming galaxies and AGN
solely on the basis of their radio luminosity. The AGN sample is complete with
respect to radio selection at all z<~3.5. 832 radio sources have a counterpart
in the PEP catalogue. 175 are AGN. Their redshift distribution closely
resembles that of the total radio-selected AGN population, and exhibits two
marked peaks at z~0.9 and z~2.5. We find that the probability for a
radio-selected AGN to be detected at FIR wavelengths is both a function of
radio power and redshift, whereby powerful sources are more likely to be FIR
emitters at earlier epochs. This is due to two distinct effects: 1) at all
radio luminosities, FIR activity monotonically increases with look-back time
and 2) radio activity of AGN origin is increasingly less effective at
inhibiting FIR emission. Radio-selected AGN with FIR emission are
preferentially located in galaxies which are smaller than those hosting
FIR-inactive sources. Furthermore, at all z<~2, there seems to be a
preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the
chances for FIR emission. We find such FIR (and MIR) emission to be due to
processes indistinguishable from those which power star-forming galaxies. It
follows that radio emission in at least 35% of the entire AGN population is the
sum of two contributions: AGN accretion and star-forming processes within the
host galaxy.Comment: 13 pages, 14 figures, to appear in MNRA
Bayesian Quantile Regression for Single-Index Models
Using an asymmetric Laplace distribution, which provides a mechanism for
Bayesian inference of quantile regression models, we develop a fully Bayesian
approach to fitting single-index models in conditional quantile regression. In
this work, we use a Gaussian process prior for the unknown nonparametric link
function and a Laplace distribution on the index vector, with the latter
motivated by the recent popularity of the Bayesian lasso idea. We design a
Markov chain Monte Carlo algorithm for posterior inference. Careful
consideration of the singularity of the kernel matrix, and tractability of some
of the full conditional distributions leads to a partially collapsed approach
where the nonparametric link function is integrated out in some of the sampling
steps. Our simulations demonstrate the superior performance of the Bayesian
method versus the frequentist approach. The method is further illustrated by an
application to the hurricane data.Comment: 26 pages, 8 figures, 10 table
Excitonic Correlations in the Intermetallic Fe2VAl
The intermetallic compound Fe2VAl looks non-metallic in transport and
strongly metallic in thermodynamic and photoemission data. It has in its band
structure a highly differentiated set of valence and conduction bands leading
to a semimetallic system with a very low density of carriers. The pseudogap
itself is due to interaction of Al states with the d orbitals of Fe and V, but
the resulting carriers have little Al character. The effects of generalized
gradient corrections to the local density band structure as well spin-orbit
coupling are shown to be significant, reducing the carrier density by a factor
of three. Doping of this nonmagnetic compound by 0.5 electrons per cell in a
virtual crystal fashion results in a moment of 0.5 bohr magnetons and destroys
the pseudogap. We assess the tendencies toward formation of an excitonic
condensate and toward an excitonic Wigner crystal, and find both to be
unlikely. We propose a model is which the observed properties result from
excitonic correlations arising from two interpenetrating lattices of
distinctive electrons (e_g on V) and holes (t_2g on Fe) of low density (one
carrier of each sign per 350 formula units).Comment: 8 2-column pages, 8 postscript figure
- …
