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Ms-rank differences for partitions without
repeated odd parts

par JEREMY LOVEJOY et RoBERT OSBURN

RESUME. Nous prouvons des formules pour les fonctions généra-
trices des différences de rang Ms pour les partitions ou les parts
impaires sont distinctes. Ces formules sont en termes de formes
modulaires et de séries de Lambert généralisées.

ABSTRACT. We prove formulas for the generating functions for
Ms-rank differences for partitions without repeated odd parts.
These formulas are in terms of modular forms and generalized
Lambert series.

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence whose
sum is n. One of the most useful ways to represent a partition is with the
Ferrers diagram. For example, the partition (10,6, 6,3, 1) is represented by
the diagram

HEE

MacMahon [18] generalized the Ferrers diagram to an M-modular di-
agram of a partition. A special case of his construction, the 2-modular
diagram is a Ferrers diagram where all of the boxes are filled with 2’s ex-
cept possibly the last box of a row, which may be filled with a 1, with
the condition that no 2 occurs directly below a 1. As an illustration, the
partition (10, 10,8,7,7,4,2,2,1) has 2-modular diagram

The first author was partially supported by an ACI “Jeunes Chercheurs et Jeunes Chercheuses”.
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If we add the condition that a 1 may only occur in the last entry of
a column, then these 2-modular diagrams correspond to partitions whose
odd parts may not be repeated. Partitions without repeated odd parts and
their 2-modular diagrams have long played a role in combinatorial studies
of g-series identities (see [1, 2, 8, 11], for example). Most recently, Berkovich
and Garvan [8] introduced what they called the Ms-rank of such partitions.
The Ms-rank of a partition A without repeated odd parts is defined to be
the number of columns minus the number of rows of its 2-modular diagram,
or equivalently,

Ms-rank (\) = P(Q)\)-‘ —v(N),

where [(\) is the largest part of A\ and v(A) is the number of parts of .
The two-variable generating function for the Ms-rank has a particularly
nice form. Namely, using the fact that partitions with distinct odd parts
correspond to overpartitions in which the odd parts are all overlined, it may
be deduced from [16, Theorem 1.2] that if Na(m,n) denotes the number of
partitions of n without repeated odd parts whose Ms-rank is m, then

¢*)n
1.1 No(m,n)z"q" Q" 5
(1) ;0 2( nzo (242, qz/z ¢*)n’

mEZL
Here we have introduced the standard g-series notation [13],

n—1
(a17 ag, ..., a4, Q)n = H (1 - alqk)(l - a2qk) T (]' - ajqk)a
k=0
following the custom of dropping the *
other than gq.
The generating function for the Ma-rank in (1.1) appears numerous times
in Ramanujan’s “lost” notebook [3], [5, Ch. 12]. When z = —1, we have

the mock theta function u(—gq) of McIntosh [19] and when z = i, this

;¢ unless the base is something
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is the mock theta function Uy(q) of Gordon and McIntosh [14, 19]. More
generally, Bringmann, Ono, and Rhoades [9] have shown that one obtains
the holomorphic part of a weak Maass form when z is replaced by certain
roots of unity. There are many nice consequences of this number-theoretic
structure, including the fact that the generating function for Na(s, ¢, n) —
Ny(t,¢,n) will often be a classical modular form when n is restricted to
arithmetic progressions. Here Ny (s, ¢, n) denotes the number of partitions of
n without repeated odd parts whose Ms-rank is congruent to s modulo £. In
this paper we obtain formulas for all of the generating functions Ny(s, ¢, fn+
d) — Na(t,l,fn + d), when ¢ = 3 or 5, in terms of modular forms and
generalized Lambert series. We shall indeed see that many of these functions
are simply modular forms.
Using the notation

(1.2) Rg(d) =Y (Na(s, €, tn +d) — Na(t, £,0n+ d)) ¢"
n>0

where the prime ¢ will always be clear, the main results are summarized in
Theorems 1.1 and 1.2 below.

Theorem 1.1. For { = 3, we have

n 6n2+9n
_ 3 q q 0o
(1.3) Bn(0)=~1-3¢ REE:Z 1-— q6n+4
ICAT S ( *;q ) (4:4°)os
(0% q")oo (42, 40, % ¢'2)2,
(=4, 4% ¢%) oo
1.4 Roi(1) = ~ 42959 )
o o) (4%, 4% ¢%) o
(1.5) Ro1(2) = (q3;q3)oo(_q6;q6>oo |

(4, 4% 450 (0%, 4% ¢ o
Theorem 1.2. For { =5, we have

( n 10n +15n
Ri2(0) = —1—¢° (g1 Z qlon+2
(1.6) nEZ
L (0.6%q" )oo(q Nars ,q14,q2°) ("% ¢*)3,(¢*; ¢*)%
(45 @)oo ’

(1.7) Ri2(1) =0,
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(1 8) R12(2) — Q(q27q18; q20)oo(q5; q5)oo(_q10; qlo)oo
(qa (]4, q5)oo ;
(—¢°,¢"% ¢
1.9 Run(3) = |
Y (¢* ¢% ¢'%)
2
Ri2(4) = 2q3(—q5;q10)oo (_1)nq10n +15n
o 10. 10 1 — glon+4
(¢*,q" 4" 4")3
+ 210 ) o ’
(¢:4%) 0 (4%, 4%, 412, ¢, ¢%%; ¢%0) oo
%5 q" n,10n2+15n
- 2(=¢°;0") 0 (—1)"q
Rp2(0) =14 2¢ (¢19; ¢19) [ gi0n

(1.11) % nez
(0, ¢4%; )2 (d"¢")3. (%, ¢®, ¢"%, 4" ¢**) o
(45 9)50(0%%5 ¢*°) 0
(=¢°, 4" ¢*%)
(42,65 ¢"9)
(0% 4°) oo (=0 1) 00 (4%, 45 ¢*°) o

(1.13) Ro2(2) = (02,63 ¢%) oo ’

Y

(1.12) Rpa(1) =

(1.14) Ro2(3) = 0,

2
R02(4) _ qg(—q5;q10)oo Z ( 1)nq10n +15n
(¢1%; ¢10) o - qlon+4
(¢*,q", 4" "%
(4:0*) (a5, 6% a'2, 4", ¢*%; %)

To prove Theorems 1.1 and 1.2, we shall roughly follow the method de-
veloped by Atkin and Swinnerton-Dyer [6] in their study of Dyson’s rank
for partitions. This method may be generally described as regarding groups
of identities as equalities between polynomials of degree £ — 1 in ¢ whose
coefficients are power series in ¢¢. Specifically, we first consider the expres-
sion

(1.15)

-~ n (6507 oo
(1.16) ;::O{Ng(s,ﬁ,n)—Ng(t,E,n)}q %
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By (2.4), (2.5), and (5.3), we write (1.16) as a polynomial in ¢ whose coef-
ficients are power series in ¢‘. We then alternatively express (1.16) in the
same manner using Theorems 1.1 and 1.2 and Lemma 3.1. Finally, we use
various g-series identities to show that these two resulting polynomials are
the same for each pair of values of s and t.

The paper is organized as follows. In Section 2 we collect some basic
definitions, notations and generating functions. In Section 3 we record a
number of equalities between an infinite product and a sum of infinite
products. These are ultimately required for the simplification of identities
that end up being more complex than we would like, principally because
there are only two 0’s in Theorems 1.1 and 1.2. In Section 4 we prove
two key ¢-series identities relating generalized Lambert series to infinite
products, and in Section 5 we give the proofs of Theorems 1.1 and 1.2.

2. Preliminaries

We begin by introducing some notation and definitions, essentially fol-
lowing [6]. With y = ¢*, let

rs(d) = Z No(s, £, fn + d)y"

n=0
and

rse(d) :=rs(d) — r(d).
Thus we have
[e%s) /-1
Z NZ(Sa 87 n)qn = Z Ts(d)qd‘
n=0 d=0

To abbreviate the sums appearing in Theorems 1.1 and 1.2, we define

(71)nc4nq2n2+3n

2(2,6,9) =)
ne”
Henceforth we assume that a is not a multiple of £. We write

. ~1 ny4bn+2n(2n+3)
S(a,b) = (gt = Y N
neZ

1— Z2q2n

1— y2£n+2a
and

, (_1)ny4bn+€n(2n+3)
2(0,b) = Y T :
ne’
where the prime means that the term corresponding to n = 0 is omitted.
To abbreviate the products occurring in Theorems 1.1 and 1.2, we define
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and

r=1
We have the relations
(2.1) P(zflq, q) = P(z,q)
and
(2:2) P(zq,9) = =2~ P(2,q).

Now, for any integer m we have (see Section 5 of [8] or [16])

(23) Z Ng(m,n)q” 749 ) Z n+1 2n2—n+2|m|n ( q2n).

n>0 n>1

It is then a simple matter to deduce that

(2.4) ZNgsmn quoZ

OO ne”

)nq2n +n( 2sn +q 2(m— s)n)
1— q2mn :

Unfortunately, it does not appear that one can go directly from differences
of (2.4) to the formulas in Theorems 1.1 and 1.2. Hence it will be beneficial
to consider sums of the form

r(—1 nq2n2+bn
nez
We will require the relation
(2.6) Sa(b) = —52(2¢ - b),

which follows from the substitution n — —n in (2.5). We shall also require
the fact that

(2.7) Sa(b) = S2(20+b) = D (—1)"¢* " — 1 = (¢***, * ", ¢*1 ¢")o — 1
neL

if b is odd. This follows by applying the case z = —¢® and replacing ¢ with
¢? in Jacobi’s triple product identity
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(2.8) > 2" =(—2¢,-4/%, ¢ ¢") oo

neEZ
3. Infinite product identities

In this section we record some identities involving infinite products.
These will be needed later on for simplification and verification of certain
identities. First, we have a result which is the analogue of Lemma 6 in [6]
and Lemma 3.1 in [17]. The proof, which just amounts to an application of
(2.8), is similar to that of Lemma 3.1 in [17] and thus is omitted.

Lemma 3.1. We have

2. 92
q-;q
(3.1) ((_q‘ qz))oo _ (q3, —g8. —¢°, _q12,q157q18;q18)oo_q(q9,q277q36;q36)00
bl oo
and
2. 2
q-;q
( 7. )oo _ (—qlo,q15, —¢®. _q40’q50;q50)OO
(=45 ¢%) o
(3.2) 20

—q(d®, —¢*°, —4*, -0, ¢*, "% ¢"*) o
- q3(q257q757 q 7q100>

Next, we quote a result of Hickerson [15, Theorem 1.1] along with some
of its corollaries.

Lemma 3.2.
P(z,q)P(2,q)(q)% = P(—22,¢)P(—qz/2,¢°)(¢*; )%
— xP(—22q,¢°)P(—2/,¢°)(¢*; ¢*)%

The first corollary was recorded by Hickerson [15, Theorem 1.2]. It follows
by applying Lemma 3.2 twice, once with = replaced by —z and once with
z replaced by —z, and then subtracting.

Lemma 3.3.
P(=2,9)P(2,9)(¢)3% — P(x,q)P(=2,9)(0)5% = 22P(2/x,¢%)
x P(x2q,¢%) (0% ¢*)%
The second corollary follows just as the first, except we add instead of

subtract in the final step.

Lemma 3.4.
P(—2,q)P(2,4)(0)% + P(z, ) P(—2,¢)(q)%, = 2P(22,¢°)

x P(qz/z,q%) (% ¢*)%
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4. Two lemmas

Theorems 1.1 and 1.2 will follow from identities which relate the sums
Y(a,b) to products P(z,q). The key steps are the two Lemmas below. These
results are similar in nature to Lemmas 7 and 8 in [6] and Lemmas 4.1 and

4.2 in [17].

Lemma 4.1. We have

0 C74n <-4n+6

2
Z (_1)nq2n +3n — +
e [1 —22(2gm T — Z2<2q2n}
C(—q,—¢,¢" *C N q?) — g +an
@1 = 2 20—2 _, 02 _g0-2. % Z A
(€%,¢%¢2,—qC*, 4¢3 4% oo , 5 1 — 2%

(_Z2Q7 _q272a <47 q24747 Cza q2C72; q2)oo(q27 q2)?>o
Z24_27 q2<23_27 22C27 q2Z_2C_27 Z2> q22_2> _qg2a _qC_Q; qz)oo .
Proof. This is just the case r = 1, s = 3, ¢ = ¢%, a1 = —2%q, by = 22/(?,
by = 22¢2, and b3 = 22 of [10, Theorem 2.1],
P(ala Q) e P(aTa Q)(Q)go
P(blaQ) o P(b57Q)
_ P(al/blaQ) B 'P(QT/bMQ)

M

(4.2)  P(b2/b1,q) - P(bs/b1,q)
y Z (_1)(sfr)nq(sfr)n(n+1)/2 ap--- arbi—r—l n
= 1= big -

+ idem(by; ba, . . ., bs).
Here we use the usual notation
F(b1,ba,...,by) +idem(by;ba, ..., by)
= F(b1,bay...,bm) + F(ba,b1,b3,...,bm)
+ -+ F(bm,ba, ..., byp—1,b1).

We now specialize Lemma 4.1 to the case ¢ = y?, z = °, and ¢ = y*:

yﬁaz(b +a,a)+3(0b—a,—a)

_ y2a P(_yé’y%)])(ylla’y%) Z(b 0)
(43) P(y2a7 yQZ)P(_y2a+€, y?f) ’
P(—y** g ) Py, y*) P(y**, y*) P(0)*

 P(y?v-2a, 20 P(y2b+2a 420) P(y2b 20) P(—y2atL 420)

=0.
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We now define

P(—q,¢*)P(z*, ¢*)
52 ) _By/.2
9(2,q) = P(ZQ,q )P(_QZQ’qg)E(Z,l,q) 2°%(2%,2,q)
i, (71)nz—4nqn(2n+3)
S
and
P P 4a, 20
(04 g(a) == g(y*, y") = y** Cy' ™) P, y™) (a,0)

Py, y*0) P(—y>*+, y)
— %% (2a,a) — £(0, —a).

The second key lemma is the following.

Lemma 4.2. We have

> P(q2*,¢*)P(=2%,¢*)P (0)213( )
P P PP
L 2P )P L) @
2 P(z8,q)
and
(4.6) 9(z,9) +g(z"'q,q) = 0.

Proof. We first require a short computation involving 3(z, (, q). Note that

y . oo . Z4<4nqn(2n+3)
Bz, G0+ oBE0 Ga) = Y (D) T s
00 . C4n+4qn(2n+3)+1
+ Z (=1) 1 — 22¢g2n+2
(4.7) e .
4n n2n 1)(* 4
= n;w( 1)"¢ )(W)
— Z ( )C4n n(2n— 1)(1+22 2n>

upon writing n — 1 for n in the second sum of the first equation. Taking
¢ =1 yields



322 Jeremy LOVEJOY, Robert OSBURN

(4.8)  2'S(z,1,q) +¢3(2q, Lq) = — > (=1)"g"® D (1 + 22¢*).

n=—oo

Now write g(z,¢) in the form

9(2,9) = f1(2) = fa(2) = f3(2)

where
P(_Q7q2)P(z47q2)
= 22 Y(z, 1
filz) == P(22,¢*)P(—2%q, ¢%) (= 1,9)
fQ(Z) = 262(Z27Z7Q)7
and

n,—4n n(2n+3)

f3(z) = Z/ (1) Z

z L—g™
n=—00
By (2.1) and (2.2) (replacing the base ¢ with ¢?), and (4.8),

- P(z',¢*)P(=q.4%)

(4.9) fi(2q)— fi(2) = (2_2+1)n;m(_1)nqn(2n+l)P(z2,q 5P z2q 2

A similar argument as in (4.7) yields

[e.e]

fo(z2q) = fa(z) = ) (—1)nztn—2gnn=1)
(4.10) n:m
+ Z )" SAn+2 n(2n+1)
and
Faed) = Fo() = =24 3 (—1yra-ingrenD
(4.11) n=-—00
+ Z n —4n n(2n+1)

Adding (4.10) and (4.11), then subtracting from (4.9) gives

(4.12) 9(z,q) — 9(2¢,q) = 2.

Here we have used the identity
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0o 9 9
-2 n 2n%+n ( )P( )
Z 7 +1 -1
| )n;oo( S P(z? )P( ZQq,q)
(413) = Z (—1)"247172(]”(2"*1)_’_ Z (_1)n24n+2qn(2n+1)
+ Z n —4n n(2n 1) + Z n —4nqn(2n+1)

which follows from [13, Ex. 5.5, p.134], the triple product identity (2.8),
and a little simplification. If we now define

P(qz2,¢*)P(—22,¢*)P(0)2P(—1, q)?
1) = (e =0 1= S R

i4p<q2zl67q4)P(_17q2)(q)go

2 P(z%,q) ’
then from (2.1), (2.2), and (4.12), one can verify that

(4.14) f(zq) - £(2) =0.

Now, it follows from a routine complex analytic argument similar to the
proof of Lemma 4.2 in [17] (see also Lemma 2 in [6]) that f(z) = 0. This
proves (4.5).

To prove (4.6), it suffices to show, after (4.12),

(4.15) 9= a) +g(z,0) = —2.
Note that
; . 0o qn(2n+3)
— — _ n
Y(z,1,q9) + 27 °%(27, 1,q) = _Z (1) 1= 24
n=—oo
9] n(2n—1)
4 q
(4.16) =2 Y () g
n=—oo

— 74 Z n n2n 1)(1+Z2 2n)

n=—oo

where we have written —n for n in the second sum in the first equation.
Thus, by (2.1), (2.2), and (4.16), we have
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filz) + A7)

2w - P(—q,¢®)P(z*,¢?)
- _ 2 _1\n,n(2n—1) 2 2n ) 5
72 (D 1+ )P(ZQ,QQ)P(—22q,q2)'

(4.17)

n=—oo

Again, a similar argument as in (4.16) gives

o0

(418) f2(Z)+f2(Z — —2 Z n 4n n2n 1)(1+Z4 2n)
and
@19) B+ =2— 3 (—1g (14 g,

Adding (4.18) and (4.19), then subtracting from (4.17) yields (4.15). Here
we have used the identity

0 2 4 2
52 Z nn2n 1)(1+z2 Qn) P(—q,q¢°)P(z%,¢°)

W P(22,¢*)P(—2%q,¢*)
00
(420) _ —2 Z n 4n nQn 1)(1+z4q2n)
n=—0o

+ Z n LAn n2n 1)(1+q2n)

n=—oo

which is easily seen to be equivalent to (4.13).

Letting z = y® and ¢ = ¢’ in Lemma 4.2, we get

2¢g(a) — g(2a) + 1
Pyt g2 P(—y?, 425 P(0)2P(—1, yb)?
Y

(4.21) C P(—yte, g2 Py, y?2) P(—1, y?)?
LY Py P Ly (v )5
2 P(ys,y")
and
(4.22) g(a)+g(f —a)=0.

These two identities will be of key importance in the proofs of Theorems
1.1 and 1.2.
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5. Proofs of Theorems 1.1 and 1.2

We now compute the sums S3(3¢ — 4m). The reason for this choice is
two-fold. First, we would like to obtain as simple an expression as possible
in the final formulation (5.3). Secondly, to prove Theorem 1.1, we only need
to compute Sa(1) whereas to prove Theorem 1.2, we need S3(11) and S5(7).
The latter in turn yields S2(1) and S2(3) via (2.6) and (2.7). For £ = 3, we
can choose m = 2 and for £ = 5, m = 1 and m = 2 respectively. As this
point, we follow the idea of Section 6 in [6]. Namely, we write

(5.1) n=4{r+m+b,

where —o0o < 7 < 00. The idea is to simplify the exponent of g in Sy(3¢ —
m). Thus

(3¢ — 4m)n + 2n% = 02r(2r + 3) 4+ 2(b + m) (b — m + £) + £(m + b) + 4blr.

We now substitute (5.1) into (2.5) and let b take the values 0, +a, and

+m. Here a runs through 1, 2, ..., K_Tl where the value a = +m mod ¢ is

"
omitted. As in [6], we use the notation Z to denote the sum over these

values of a. We thus obtain

>, q(3€—4m)n+2n2
Sa(8t —dm) = ¥ (<1

Or(2r+3)+4br
:Z Z 1)rHmtbymetb 2(bm) (b= ) Y

= 1— yQ(ZT—i-m—i-b) ’

where b takes values 0, +a, and +£m and the term corresponding to r = 0
and b = —m is omitted. Thus

S2(3¢ — 4m)
= (=)@ M8 (m, 0) + 2(0, —m) + y*"E(2m, m)

"
(5.2) + Z { 1)mte m+aq2(a+m)(a m4-£)

X {E(m +a,a) +y %% (m — a, —a)}}.

Here the first three terms arise from taking b = 0, —m, and m respectively.
We now can use (4.3) to simplify this expression. By taking b = m and
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dividing by 3% in (4.3), the sum of the two terms inside the curly brackets
becomes

—4a P(_yﬁa yQZ)P(y4a’ y2f)
P(y?e, y?)P(—y?*+t, y2)
P(—y*™**, y* ) P(y*, y*) P(y**, y**) P(0)°
P(me—Qa’ y%)P(y2m+2a’ yQE)P(yZm’ yZE)P(_yQQ—&—f, y%) ’
Similarly, upon taking a = m in (4.4), then the sum of the second and third
terms in (5.2) is

¥(m,0)

+ y—ﬁa

2m P(_yﬁ,y2€)P(y4m,y2f)

P(y2m, y20) P(—y2m+ 420 5(m, 0) — g(m).
In total, we have
52(36 — 4m) =
—g(m)
n Z//{ (_1)m+a,ym—5aq2(a+m)(a—m+@
y P(—y*™ ) Py, y*) P(y**, y**) P(0)*
(5.3) P(y2m—2a_y30) p(y2m+2a_y30) p(y2m o 20) p(—q2at 4 20)

2m P(_y€7y2£)P<y4m7y2£)
P(y?m,y?t) P(—y?mtt, y2)

+X(m,0) { (—1)mymgPmi=m) 4y

+ Z”(_l)m—f—a m—3a_2(a+m)(a—m+L) P(_ye7y2£)P(y4avy2£)
o Py, y? ) P(—y> 4y |

a

We can simplify some of the terms appearing in (5.3) as we are interested
in certain values of ¢, m, and a. To this end, we prove the following result.
Let { } denote the coefficient of ¥(m,0) in (5.3).

Proposition 5.1. If ¢ =3 and m = 2, then

o 0(0%50%) 00 (—4% ")
b= (=460 (¢'8; 1) 0

If =5 m=2, and a =1, then
(1 19 (0%58%) 00 (=6%%5 ¢™) o

B (=4 4% o0 (4% ¢°0) o
Ift=5 m=1, a=2, then
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{ 1= g0 (0% 6%) oo (=471 4™) o0
(= 4*)o0(2°% ¢°) 0
Proof. These are easily deduced from Lemma 3.1. U

We are now in a position to prove Theorems 1.1 and 1.2. We begin with
Theorem 1.1.

Proof. By (2.4), (2.5), and (2.6), we have

00 2. .2
(5.4) Z‘;{Nz(o, 3,n) — Nao(1, 3,n)}qn((fq’;qq2);: = 285(1) + So(7).

By (2.1), (2.2), (5.3), and Proposition 5.1 we have

18)

2.2 9.

Taking b =1 in (2.7) yields

2. .2
(5.6) So(1) — Sy(7) = m ~ 1.
By (5.4), (5.5), and (5.6), we have that
B 2050 o0(=0% ") - (@46
39(2) =3y (—¢; q2)oo(q18;q18)ooz(2’0) (¢ @)oo !
2. 2
= {T()l (0)(]0 + Tol(l)q + 701 (2)(]2}%.

We now multiply the right hand side of the above expression using Lemma
3.1 and the 791 (d) from Theorem 1.1 (recall that ro1(d) is just Ro;(d) with
q replaced by ¢®). We then equate coefficients of powers of ¢ and verify the
resulting identities. The only power of ¢ for which the resulting equation
does not follow easily upon cancelling factors in infinite products is the
constant term. We obtain

—-39(2)+1
_ (@"%0")5(=0% 6”5 (6% 6% (¢%, — 0%, —¢°, —4"%, 4", 4% ¢"¥)
B (424" o0 (45, 4%, ¢%; ¢%0)%,
(qg; qg)oo(_q18; q18)oo(q9’ q277 q36; q36)oo
(4*,4"°:0"%)oc (42, ¢**; ¢°%) oo
The first term (resp. second term) above is easily seen to be identical to the
first term (resp. second term) in (4.21) with a = 1. Applying (4.22), this
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then establishes the above identity and completes the proof of Theorem
1.1. O

We now turn to Theorem 1.2.

Proof. We begin with the rank differences Rj2(d). By (2.4), (2.5), and (2.6),

we have

00 2. .2
(5.7) ;}{Ng(l, 5,m) — Na(2, 5,n)}q"((qq’;c‘;2);: = 25,(3) — Sa(1).

By (2.1), (2.2), (2.7), (5.3), and Proposition 5.1,

P(0)*P(—y",y")

Sa(1) = —g(1) + TP(y2, y10) P(—y9, y10)

(58) 2. .2 25. .50 2. .2
2 (0%4%)o0 (=070 )00 | (40700
Ty ()06 ) (—4:¢%)0 !
and
_ P(0)2P(—y?,y"°)
5.9 528 = 9C) 98 =y )

(7% 4% o0 (—0%°;¢°) o

3 4
+y°q (2,0 .
& O s )o@ )

By (5.7), (5.8), and (5.9), we have

P(0)*P(—y”,y")
P(y*,y'0) P(—y7, y'0)
P(0)2P(—y",y'*)

(7% 4%) 0o (—0%%; 4™) o
(=4:4*) o0 (¢%%; %) 0
(0% 4% o0 (=% 4%) oo

29(2) + 2yq* +2y°¢'%(2,0)

(1) = TP,y ) P(—y0,y10) yu(10) (=4 4*)0(¢°% ¢°%) o
(%)
(—4:¢%)o 1
.2
= {7'12(0)(10 +r12(1)q + 712(2)¢* + r12(3)¢® + 7‘12(4)(14} ((11’722))‘:)

We now multiply the right hand side of the above expression using Lemma
3.1 and the Rj3(d) from Theorem 1.2, equating coefficients of powers of q.
The coefficients of ¢*, ¢*, ¢%, ¢, ¢* give us, respectively,



(5.10)

(5.11)

(5.12)

(5.13)
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29(2) +9(1) +1

= (¢’

X

B yQ (qIO’ q90; qIOO)OO(q25; q25)oo(_q50; q50)oo(q25a q75’ ql[)O; qIOO)OO

4% 72 (6%, 6, 4%, 4% ¢"") o (¢° ,qwo)
(g9 g2 (—4¢'°, ¢'°, —¢*, ¢*°, —¢*°, ¢°%; ¢°") o

(4% 6°)oo
20 _ 25

(@%°, 6%, %% ¢*)2 (¢°, —¢*°, —¢*°, —¢*°, 4%, ¢°*; ¢°°) o

(q5; ql(])oo(qii(]7 q40, q(i(]7 q70, qIOO; QIOO)OO
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(4°,4%%5¢%) o

(@°% ") 2 (4", —¢%; ¢
(ql(]’ q40; q50)00(7q57 7q45; qSO)OO
= (4,4 ¢°) % (6%, "% ¢%, 7% ") (¢°°; ¢" )2,

y (q100 q100) (q , q20 _q25’ q30’q457q ;q )oo
(2% 4°)o0
+y( 7*°, 4% ¢")oo(¢*, 47, 4" qloo)oo’
(4%, ¢3¢0
(qlo’q 7quO) (q25;q25)oo(_q50;q50)oo
y (_qlo,q ,—q 57 q35’ _q407 q50; q50)oo

(4%, 4% ¢%°)
_ (62,0, 0% )% (67,47, 4" ¢'")oo
(4°54°) 00 (%0, ¢%0, 50, ¢70, ¢100; ¢100) 7

(—=6%, 0% ) oo (—0'°, 4%, —¢%°, 0%, —¢*°, ¢°°; ¢°*) o

(@, 6% ¢°%) o
= y(4", 4" ¢") 00 (¢*; ) 00 (— "% ¢™)

(¢°, —q*°, —¢%, q3°, 7, 4% ¢°) o

X

(4°,4%%;¢%) o
+(¢°, 4" ¢")2% (q30,q40,q6°,q %:¢1%) 0 (¢ ¢") 3,
y (g% ¢199)2 (¢%°, 475, ¢1%0; ¢199)

(°:4°) o
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gy 0740 (—4" — )

(029, ¢30; ) oo (—q1%, —¢%%; ¢70) o
(@"°,4%,6% 45 (=4", 4", —¢*,¢®, —¢*, 6™ ")

(4%:4")o0 (6%, 4%, 4%, 47, ¢'%; ¢'") o
(0%, 0) (@’ ¢ 0%, =%, 4%, ¢"°; ¢°*) o
(4%, 4% ¢°)oo

Equation (5.12) is immediate after some simplification. The other iden-

tities follow from routine (though tedious) reduction and application of one

of Lemmas 3.2 - 3.4. Specifically, upon clearing denominators in (5.11) and
simplifying, we have

(—4"%,¢°,¢*, —¢**;¢"") o
(5.15) =(¢"¢"% -4, —¢*, —¢*, —¢®, —¢*°, 4%, ¢", ¢*°; ")

+y(—¢", 4", ¢*, —¢*; ¢")

(5.14) —

oo

Now replacing ¢ by —¢, this may be verified using the case (x,z,q) =
(—¢°, ¢'°,¢*) of Lemma 3.2. After clearing denominators and simplifying,
(5.13) may be reduced to

(_q25; q50)go(q20’q80; qloo)oo(q157q35;q50)oo
(516) — y(qlovqgo;qIOO)oo(qlo, _q20’ _q30’q40; q50)
+ (6", ¢ ¢ o (¢°, —¢"°, =%, 4% ¢°°) o

Factoring out (¢°, —¢%°, —¢*°, ¢**; ¢°°) o from the right hand side, replacing
q by —q and applying the case (z,z,q) = (¢°, —¢'°,¢*®) of Lemma 3.2

verifies (5.16). For (5.14), we clear denominators and simplify to get

29(¢", 4%, 4% ") 0 (6" ¢' ") o
—_ (ql(]7 _q107 _qlo, ql'f)7 q157 _q15’ _q25’ q357
4 4 4
(5.17) 7, —4*,¢"%, -4, —¢",¢"% ¢"*)

- (q57 q57 _q157 q205 _q207 _q207 _q257 qgoa

— ¢, —¢*,—¢%,¢",¢",¢"; ¢") .
Factoring out (—¢'®, —¢**, —¢%,¢%%;¢°*)so from both terms on the right
hand side, replacing ¢ by —¢ and writing the right hand side in base ¢%°
yields an expression to which the case (z,z,q) = (—¢°, —¢'%, ¢*%) of Lemma
3.3 may applied, confirming (5.17).
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As for (5.10), taking a = 2 in (4.21) and applying (4.22) gives
29(2) +9(1) +1
_ (@,6"567)00(=0%, %% ¢™) oo (— 4% ¢7°)50 (@™ 4°) %
(5.18) (=% —4":¢%) 0 (4%, 4% ¢°)
2 (4", 6% 4" 0 (6% ¢*) % (—=¢°%; 4™
(4%, 4% 4%)oo
The final term above is identical to the final term in (5.10). After some

simplification, the fact the the first term above is equal to the first two
terms in (5.10) is equivalent to the identity

(@, 47% ') 0 (", —¢"%, —¢%5, — ¢ ¢) o
(5.19) —y(—¢°, —4*; ¢

15 25 25 30 35 45,
) q )

:(q57_q y—q ,—q ,—q ,—(q 50)

q

oo

Equation (5.19) is seen to be true after multiplying both sides by
("%, ¢*%; ¢*) s, replacing ¢ by —gq, and applying the case (z,z,q) =
(—¢°,q'%, ¢*) of Lemma 3.2.

We now turn to the rank differences Rp2(d), proceeding as above. Again

by (2.4), (2.5), and (2.6), we have

i{NQ(O’ 5,n) — Na(2, 5,@}@%

= (=4 ¢%)o
(5.20) =0 )
= 255(1) + S(3) — ﬁ ey
By (5.20), (5.8), and (5.9), we have
P(0)2P(—y7, yIO) 5 (_q25; qBO)OO
—92g(1) + 2 1+ 2425(1,0
g(1) TPy, y ) P(—9,y10) * Y ( )(—q; 4?)oc(4°%¢°%) oo
P(O)QP(—ygyyw) 3 4 (—QQS;QSO)OO
+ g(2) + yqg* - (2,0
9@) T YT By 1oy p—y7 10y TV E@ O Ty S
2. .2
L e 7q2)oo 1
(—4; %)
_ 0 2 3 4 (qz;q2)oo
= {7“02(0)(1 +702(1)q + r02(2)q” + ro2(3)q” + ro2(4)q }W

Again, substituting for rg2(d) from Theorem 1.2 and equating coefficients
of powers of ¢ yields the following identities to be verified.
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2g(1) —g(2) +1
_ (q57q45;q50)go(q50;q50)20(q307q407qﬁoaq70;q100)oo

(_qIO q15 _q25 q35 _q40 q q O)Oo

(5.21) X (@5 @)oo (4100 g100)
+_y(q15,q35,q50;q5°)§o(q5,——qzo,——q25,-—q3°,q45,q50;q5°)oo
(q5’ qlo)oo(q307 q407 q607 q70’ qIOO; ql(]O)oo

(@, 4" 50 (6% 6% ) 0o (—0°% 7)o (675, 475, 105 ¢'0) s

+y
(49, ¢"%;¢%)

2 (¢"° ,q ) (=", —¢ ,q oo
("%, %% ¢°) oo (=%, —4*%: ¢°%) o
(=507 (@) 0o (=%, ¢, =%, %%, — 4%, 75 ¢°°) oo
(5.22) (¢, 4% ¢%)

+(¢°, 4" ¢") 2 (6" ¢™)2. (6%, 6", 4™, 0% ¢')
(q5 _q20 _q25 _q30 q45 q50. q50)00
X ) ) ) ) ) b ,
(4°56%) 00 (q190; ¢109)

(@*°, 476" )0 (6*°; ¢*) oo (=" ¢°*) o

(=", ¢, =%, ¢, —¢", ¢ ¢"") o
(419, 4% ¢®) o

(523) _ (_q25; q50)oo(q50; q50)oo(q5, _q20’ _q25’ _q30’ q45, q50; q50)Oo
- (qlo q40.q50)

(@', 6%, ¢°% ¢°°)% (4%, 4", ¢*%%; ¢10)

(q5, qlo)oo(q30; q40’ q60’ q70’ qIOO, qIOO)OO ’

X

+y

(q30’q ’q100) (q25;q25) (_q50;q50)oo
y (q5’ 7q20, 7q257 q30’ q45’ q50; q50)oo
(5.24) (49, ¢1%;¢%°) o
==(q5,q45;q50)2 (@ ¢™)2.(d®, ¢, ¢, 0" ¢'"")
((1257 q75’ q ’qIOO)
(655 4°) 0 (1995 ¢190) o
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y (0°% )2 (—¢°, 4" ")
(q20’ q30; (]5())00(_(]157 _q35; q50)oo
(525) —_ (q157 q357 q50; q50)go(_q107 q157 _q257 q357 _q407 q50; q50>oo
<q5, ql())oo(q?)()’ q40’ q60’ q70’ ql()(); qIOO)OO
~(=0%307) (6% ") (67,4, ¢ ')
(419, ¢%; ¢°) o

These follow in the same way as equations (5.10) - (5.14). The arduous
details are left to the interested reader. The point is to simplify and reduce
in order to arrive at an expression that can be verified using an appropriate
instance of one of the Lemmas 3.2 - 3.4.

g

6. Concluding remarks

With the present paper and previous work on rank differences for over-
partitions [17], we have seen the effectiveness of the approach developed by
Atkin and Swinnerton-Dyer [6] for proving formulas for rank differences in
arithmetic progressions in terms of modular forms and generalized Lam-
bert series. We should stress that two major difficulties in this method are
the requirement that all of the formulas be ascertained beforehand and the
apparent need for a new set of key g-series identities for each application.
Nevertheless, the ideas should in principle be reliable in other instances
where there is a two-variable generating function like (2.3). For example,
one might consider the M2-rank for overpartitions [16], ranks arising in
Andrews’ study of Durfee symbols [4], or the generalized ranks of Garvan
[12]. Finally, as evidenced by work of Atkin and Hussain [7] on the partition
rank, the formulas for rank differences quickly become more complicated
as £ grows. It would be interesting to try to extend the method used for
¢ =3 and 5 here and in [17] to the case £ = 7.
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