9,644,215 research outputs found

    The colour evolution of the process q q -> q q g

    Full text link
    We calculate the soft anomalous dimension matrix for a five-parton process, qq -> qqg. Considering different bases we unveil some interesting properties of this matrix.Comment: 11 pages; calculation extended to general 5-parton kinematic

    A chiral model for bar{q}q and bar{q}bar{q}qq$ mesons

    Full text link
    We point out that the spectrum of pseudoscalar and scalar mesons exhibits a cuasi-degenerate chiral nonet in the energy region around 1.4 GeV whose scalar component has a slightly inverted spectrum. Based on the empirical linear rising of the mass of a hadron with the number of constituent quarks which yields a mass around 1.41.4 GeV for tetraquarks, we conjecture that this cuasi-chiral nonet arises from the mixing of a chiral nonet composed of tetraquarks with conventional bar{q}q states. We explore this possibility in the framework of a chiral model assuming a tetraquark chiral nonet around 1.4 GeV with chiral symmetry realized directly. We stress that U_{A}(1) transformations can distinguish bar{q}q from tetraquark states, although it cannot distinguish specific dynamics in the later case. We find that the measured spectrum is consistent with this picture. In general, pseudoscalar states arise as mainly bar{q}q states but scalar states turn out to be strong admixtures of bar{q}q and tetraquark states. We work out also the model predictions for the most relevant couplings and calculate explicitly the strong decays of the a_{0}(1450) and K_{0}^*(1430) mesons. From the comparison of some of the predicted couplings with the experimental ones we conclude that observable for the isovector and isospinor sectors are consistently described within the model. The proper description of couplings in the isoscalar sectors would require the introduction of glueball fields which is an important missing piece in the present model.Comment: 20 pages, 3 figure

    Solvent content of protein crystals from diffraction intensities by Independent Component Analysis

    Full text link
    An analysis of the protein content of several crystal forms of proteins has been performed. We apply a new numerical technique, the Independent Component Analysis (ICA), to determine the volume fraction of the asymmetric unit occupied by the protein. This technique requires only the crystallographic data of structure factors as input.Comment: 9 pages, 2 figures, 1 tabl

    Simple solvation potential for coarse-grained models of proteins

    Full text link
    We formulate a simple solvation potential based on a coarsed-grain representation of amino acids with two spheres modeling the CαC_\alpha atom and an effective side-chain centroid. The potential relies on a new method for estimating the buried area of residues, based on counting the effective number of burying neighbours in a suitable way. This latter quantity shows a good correlation with the buried area of residues computed from all atom crystallographic structures. We check the discriminatory power of the solvation potential alone to identify the native fold of a protein from a set of decoys and show the potential to be considerably selective.Comment: 18 pages, 8 tables, 3 figure
    corecore