1-systems of $Q(6, q)$ and $Q^{-}(7, q)$: recent results

Deirdre Luyckx ${ }^{1}$ Joseph A. Thas

Ghent University
Department of Pure Mathematics and Computer Algebra
Galglaan 2, B-9000 Ghent
Belgium
dluyckx@cage.rug.ac.be
jat@cage.rug.ac.be

In [2], m-systems of polar spaces were introduced by Shult and Thas and a description of several classes of examples is given. However, few other examples are known until now. First, we briefly discuss the construction of a new class of 1-systems of $Q(6, q), q$ odd, starting from a generalization of a flock of a quadratic cone in $P G(3, q)$. Secondly, we mention a uniqueness result about 1-systems of the quadric $Q^{-}(7, q)$.

An i-flock of a quadratic cone $L Q(2, q)$ with line vertex in $P G(4, q), q$ odd, is defined as a partition of $L Q(2, q) \backslash L$ in q^{2} mutually disjoint conics such that the planes of the elements of the i-flock pairwise intersect in internal points of $L Q(2, q)$. It can be shown that to every i-flock of $L Q(2, q)$ a locally hermitian 1 -system of $Q(6, q)$ is associated and conversely.

Applying the theory of the i-flocks to the semi-classical non-hermitian spread $\mathcal{S}_{[9]}$ of the hexagon $H(q), q$ odd and $q \equiv 1 \bmod 3($ see $[1])$, which is locally hermitian at some line L, we find an interesting geometric construction of $\mathcal{S}_{[9]}$ starting from a rational normal cubic scroll \mathcal{R}^{3} having L as directrix line. Apparently the conics on \mathcal{R}^{3} determine the q^{2} conic planes of the i flock associated with $\mathcal{S}_{[9]}$ and hence the i-flock can be reconstructed from the cubic scroll. Surprisingly this geometric construction not only yields the 1 -system $\mathcal{S}_{[9]}$; it turns out that different cubic scrolls may give rise to nonisomorphic locally hermitian 1 -systems of $Q(6, q)$. In particular, there are $(q-3) / 2$ orbits in the set of all non-hermitian locally hermitian 1-systems of $Q(6, q)$ constructed from a cubic scroll, under the subgroup of $\operatorname{PGL}(7, q)$ fixing $Q(6, q)$.

[^0]It can be shown that a locally hermitian non-hermitian 1-system of $Q(6, q)$, q odd, is semi-classical if and only if it arises from a rational normal cubic scroll \mathcal{R}^{3} with directrix line $L \subseteq Q(6, q)$ and with the property that all points of $\mathcal{R}^{3} \backslash L$ are internal points of $Q(6, q)$. As it is possible to determine all such cubic scrolls, this yields a complete characterization and determination of the locally hermitian semi-classical 1-systems of $Q(6, q)$ for q odd.

Now, let \mathcal{M} be a 1 -system of $Q^{-}(7, q)$. Then it can be shown that every line of $Q^{-}(7, q)$ contains $0,1,2$ or $q+1$ points on lines of \mathcal{M} and that the latter holds if and only if the line itself belongs to \mathcal{M}. For q odd, this implies that every plane of $Q^{-}(7, q)$ either contains a line of \mathcal{M} or an irreducible conic of points on lines of \mathcal{M}. This observation enabled us to prove that $Q^{-}(7, q)$ has a unique 1 -system for q odd, up to a projectivity. This is an important result because 1 -systems of $Q^{-}(7, q)$ were candidates to yield new generalized quadrangles, as described in [3].

References

[1] I. Bloemen, J. A. Thas and H. Van Maldeghem. Translation ovoids of generalized quadrangles and hexagons.
Geom. Dedicata, 72(1):19-62, 1998.
[2] E. E. Shult and J. A. Thas. m-systems of polar spaces.
J. Combin. Theory Ser. A, 68(1):184-204, 1994.
[3] E. E. Shult and J. A. Thas. Constructions of polygons from buildings. Proc. London Math. Soc. (3), 71(2):397-440, 1995

[^0]: ${ }^{1}$ The first author is Research Assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

