4,517 research outputs found

    Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    Get PDF
    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3–10 nm) and macropores (0.1–1 µm and 20–80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes’ methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm−3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes’ methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation

    A Study of Vitrified Nuclear Wasteforms by Molecular Dynamics, Electron Microscopy and Raman Spectroscopy

    Get PDF
    In this study an attempt is made to create molecular dynamics (MD) models of borate glass, alkali borosilicate glasses, and UK vitreous High Level Radioactive Wasteforms. The study also includes experimental studies of vitrified wasteforms by helium pycnometry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray florescence spectroscopy (XRF) and Raman spectroscopy. Molecular dynamics models of alkali borosilicate glasses were created using Buckingham and BHM potentials in the constant pressure and temperature ensemble. The models using BHM potentials showed more realistic boron coordination numbers than those using Buckingham potentials. However structural features such as Si-O, Li-O and Na-O nearest neighbour distances and O Si O and O B O bond angles were considered satisfactory using Buckingham potentials. SEM images showing phase separation in four different vitrified wasteforms are presented. The chemical composition of the phases were determined using SEM EDX. XRF spectroscopy was obtained from the wasteforms in powder form and show qualitative agreement with nominal compositions. Raman spectroscopy also revealed the presence of MoO4 tetrahedra in a glass environment and in phases such as CaMoO4 and Na(Gd,Nd)(MoO4)2. The presence of ruthenium, cerium and zirconium phases were also found in the Raman spectra of wasteforms. MD models of three simplified vitrified wasteforms were created using Buckingham potentials. Two models of each wasteform were created. The first models used only two-body potentials and showed MoO6 octahedra connected to borosilicate network formers. In the second model of each wasteform, an additional O Mo O three-body potential was applied. The results of the second models showed MoO4 tetrahedra detached from the borosilicate network which is a realistic feature in comparison to the experimental observations

    Chemical Vapor Deposition of silicon nanodots on TiO2 submicronic powders in vibrated fluidized bed

    Get PDF
    Silicon nanodots have been deposited on TiO2 submicronic powders in a vibrated Fluidized Bed Chemical Vapor Deposition (FBCVD) reactor from silane SiH4. Deposition conditions involving very low deposition rates have been studied. After treatment, powders are under the form of micronic agglomerates. In the operating range tested, this agglomerates formation mainly depends on the fluidization conditions and not on the CVD parameters. The best results have been obtained for anatase TiO2 powders for which the conditions of fluidization have been the most optimized. For these anatase powders, agglomerates are porous. SEM and TEM imaging prove that silicon nanodots (8-10 nm in size) have been deposited on the surface of particles and that this deposition is uniform on the whole powders and conformal around each grain, even if not fully continuous. Raman spectroscopy shows that the TiO2 powders have been partially reduced into TiO2-x during deposition. The TiO2 stoichiometry can be recovered by annealing under air, and IR spectroscopy indicates that the deposited silicon nanodots have been at least partly oxidized into SiO2 after this annealing

    Characterization of the porous structure of biodegradable scaffolds obtained with supercritical CO2 as foaming agent

    Full text link
    Poly(ε-caprolactone) foams were prepared, via a batch process, by using supercritical CO2 as foaming agent. Their porous structure was characterized through mercury porosimetry, helium and mercury pycnometry, scanning electron microscopy (SEM) and X-ray microtomography observations coupled with image analysis. The pore size distributions obtained by these two latter techniques show that the pore structure is more homogeneous when the foaming process is performed under a high CO2 saturation pressure (higher than 250 bars)

    Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester.

    Get PDF
    Sorbent-assisted water harvesting from air represents an attractive way to address water scarcity in arid climates. Hitherto, sorbents developed for this technology have exclusively been designed to perform one water harvesting cycle (WHC) per day, but the productivities attained with this approach cannot reasonably meet the rising demand for drinking water. This work shows that a microporous aluminum-based metal-organic framework, MOF-303, can perform an adsorption-desorption cycle within minutes under a mild temperature swing, which opens the way for high-productivity water harvesting through rapid, continuous WHCs. Additionally, the favorable dynamic water sorption properties of MOF-303 allow it to outperform other commercial sorbents displaying excellent steady-state characteristics under similar experimental conditions. Finally, these findings are implemented in a new water harvester capable of generating 1.3 L kgMOF -1 day-1 in an indoor arid environment (32% relative humidity, 27 °C) and 0.7 L kgMOF -1 day-1 in the Mojave Desert (in conditions as extreme as 10% RH, 27 °C), representing an improvement by 1 order of magnitude over previously reported devices. This study demonstrates that creating sorbents capable of rapid water sorption dynamics, rather than merely focusing on high water capacities, is crucial to reach water production on a scale matching human consumption

    High temperature structural and magnetic properties of cobalt nanowires

    Get PDF
    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles (~10) at high temperatures (up to 623 K) using in situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by u0Hc=2(Kmc+Kshape)/Ms with Kmc the magnetocrystalline anisotropy constant, Kshape the shape anisotropy constant and Ms the saturation magnetization. Hc decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300 - 500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation.Comment: 8 pages, 7 figures, submitted to Journal of Solid State Chemistr

    An atomic scale comparison of the reaction of Bioglass® in two types of simulated body fluid

    Get PDF
    A class of melt quenched silicate glasses, containing calcium, phosphorus and alkali metals, and having the ability to promote bone regeneration and to fuse to living bone, is produced commercially as Bioglass. The changes in structure associated with reacting the bioglass with a body fluid simulant (a buffered Tris(hydroxymethyl)aminomethane growth medium solution or a blood plasma-like salt simulated body fluid) at 37°C have been studied using both high energy and grazing incidence x-ray diffraction. This has corroborated the generic conclusions of earlier studies based on the use of calcia–silica sol-gel glasses whilst highlighting the important differences associated with glass composition; the results also reveal the more subtle effects on reaction rates of the choice of body fluid simulant. The results also indicate the presence of tricalcium phosphate crystallites deposited onto the surface of the glass as a precursor to the growth of hydroxyapatite, and indicates that there is some preferred orientation to their growth

    Sintering behaviour of cobalt ferrite ceramic

    Get PDF
    Pure cobalt ferrite ceramic powder was prepared using standard solid-state ceramic processing. Uniaxially pressed pure cobalt ferrite discs, sintered under isothermal ramp rate and single dwell time conditions, yielded a maximum theoretical density (%Dth) of <90%. Discs made from finer particle size powder yielded a %Dth of 91.5%. Based on dilatometry analysis, a sintering profile comprising non-isothermal sintering, and two-step sintering was devised, yielding discs with %Dth of 96%. Cylindrical rods of pure cobalt ferrite were cold iso-statically pressed and sintered according to the revised sintering profile. Pycnometry analysis was used to quantify the percentages of open and closed pores in the rods after sintering

    Using small-angle X-ray scattering to investigate the compaction behaviour of a granulated clay

    Get PDF
    The compaction behaviour of a commercial granulated clay (magnesium aluminium smectite, gMgSm) was investigated using macroscopic pressure-density measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray microtomography (XμT) and small-angle X-ray scattering (SAXS). This material was studied as a potential compaction excipient for pharmaceutical tabletting, but also as a model system demonstrating the capabilities of SAXS for investigating compaction in other situations. Bulk compaction measurements showed that the gMgSm was more difficult to compact than polymeric pharmaceutical excipients such as spheronised microcrystalline cellulose (sMCC), corresponding to harder granules. Moreover, in spite of using lubrication (magnesium stearate) on the tooling surfaces, rather high ejection forces were observed, which may cause problems during commercial tabletting, requiring further amelioration. Although the compacted gMgSm specimens were more porous, however, they still exhibited acceptable cohesive strengths, comparable to sMCC. Hence, there may be scope for using granular clay as one component of a tabletting formulation. Following principles established in previous work, SAXS revealed information concerning the intragranular structure of the gMgSm and its response to compaction. The results showed that little compression of the intragranular morphology occurred below a relative density of 0 · 6, suggesting that granule rearrangements or fragmentation were the dominant mechanisms during this stage. By contrast, granule deformation became considerably more important at higher relative density, which also coincided with a significant increase in the cohesive strength of compacted specimens. Spatially-resolved SAXS data was also used to investigate local variations in compaction behaviour within specimens of different shape. The results revealed the expected patterns of density variations within flat-faced cylindrical specimens. Significant variations in density, the magnitude of compressive strain and principal strain direction were also revealed in the vicinity of a debossed feature (a diametral notch) and within bi-convex specimens. The variations in compaction around the debossed notch, with a small region of high density below and low density along the flanks, appeared to be responsible for extensive cracking, which could also cause problems in commercial tabletting
    corecore