149,739 research outputs found
Note on the pumped storage potential of the Onslow-Manorburn depression, New Zealand
The Onslow-Manorburn depression in the South Island of New Zealand has possibility for development as the upper reservoir of the world's largest pumped storage scheme, as measured by an energy storage capacity of 10,200 GWh of realisable potential energy. This would more than triple the total national hydro-power energy storage capacity. It is envisaged that the scheme could either operate on a seasonal cycle or act as a passive energy reserve to buffer existing hydro-power capacity against the effect of dry years
A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant
Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver
Transcritical Carbon Dioxide Charge-Discharge Energy Storage with Integration of Solar Energy
New and improved energy storage technologies are required to overcome
non-dispatchability, which is the main challenge for the successful integration of large
shares of renewable energy within energy supply systems. Energy storage is proposed to
tackle daily variations on the demand side, i.e., storing low-price energy during off-peak
or valley periods for utilization during peak periods. Regarding electrical energy storage,
several technologies are available with different potentials for scalability, density, and
cost. A recent approach for grid-scale applications is based on transcritical carbon
dioxide charge and discharge cycles in combination with thermal energy storage systems.
This alternative to pumped-hydro and compressed air energy storage has been discussed
in scientific literature, where different configurations have been proposed and their
efficiency and costs calculated. The potential of the concept has been demonstrated to be
an economical alternative, including hybrid concepts with solar thermal storage. Even at
low temperatures, the addition of solar energy has proved to be cost effective. This paper
explores the effect of introducing solar-based high temperature heat on the performance
of different configurations of “Transcritical carbon dioxide ‒ thermal energy storage
system” cycles. A base-cycle with 8-hour discharge time is compared with different
layouts. Discussions include details on the models, parametric analyses -including solar
technology alternatives-, and simulation results. Round trip efficiency of the base case,
without solar support and at pressure ratio of 9.4, is 52%. When solar input is considered,
the efficiency is above 60%, increasing the turbine inlet temperature to 950 K. Estimated
levelized cost of electricity values are in the range of pumped hydro and compressed air
energy storage, 90-140 USD/MWh in agreement with other works on this thermal storage
technology. The global analysis shows clear advantages for advancing in the study and
definition of this technology for exploitation of synergies at different power ranges,
integrated with mid/high temperature solar power plants and with smaller-scale
renewable installations.Unión Europea. Fondo Europeo de Desarrollo Regional SOE1 / P3 / P0429E
Prospects for pumped-hydro storage in Germany
After a period of hibernation, the development of pumpedâ€hydro storage plants in Germany regains momentum. Motivated by an ever increasing share of intermittent renewable generation, a variety of energy players considers new projects, which could increase the available capacity by up to 60% until the end of the decade. This paper analyzes the current development and evaluates the revenue potential as well as possible barriers. Overall, the prospects for new pumpedâ€hydro storage plants have improved, even though profitability remains a major challenge.pumped-hydro energy storage, power plant investment, Germany
Cold water aquifer storage
A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered
Optimal short-term operation and sizing of pumped-storage power plants in systems with high penetration of wind energy
In this paper the short-term optimal operation of an electric system comprising several thermal power plants and one pumped storage plant is studied in several scenarios of power demand and wind penetration in order to draw conclusions about the contribution of the pumped storage plant to system operation costs. A mixed integer linear programming model is used to obtain the optimal hourly thermal, hydro and pumping powers so that the production cost of the entire system is minimized. An aggregated piecewise linear hourly production cost curve is used to represent the thermal generation; the marginal production cost varying as a function of the power generated according to the slope of each piecewise linear segment. Main design parameters of the pumped storage plant are not considered fixed in the model but rather they are obtained in the solution with the purpose of drawing conclusions about the plant optimal sizin
Dynamic safety assessment of a nonlinear pumped-storage generating system in a transient process
This paper focuses on a pumped-storage generating system with a reversible Francis turbine and presents an innovative framework for safety assessment in an attempt to overcome their limitations. Thus the aim is to analyze the dynamic safety process and risk probability of the above nonlinear generating system. This study is carried out based on an existing pumped-storage power station. In this paper we show the dynamic safety evaluation process and risk probability of the nonlinear generating system using Fisher discriminant method. A comparison analysis for the safety assessment is performed between two different closing laws, namely the separate mode only to include a guide vane and the linkage mode that includes a guide vane and a ball valve. We find that the most unfavorable condition of the generating system occurs in the final stage of the load rejection transient process. It is also
demonstrated that there is no risk to the generating system with the linkage mode but the risk probability of the separate mode is 6 percent. The results obtained are in good agreement with the actual operation of hydropower stations. The developed framework may not only be adopted for the applications of the pumped-storage generating system with a reversible Francis turbine but serves as the basis for the safety assessment of various engineering applications.National Natural Science Foundation of ChinaFundamental Research Funds for the Central UniversitiesScientific research funds of Northwest A&F UniversityScience Fund for Excellent Young Scholars from Northwest A&F University and Shaanxi Nova progra
Prospects for pumped-hydro storage in Germany
After a period of hibernation, the development of pumped-hydro storage plants in Germany regains momentum. Motivated by an ever increasing share of intermittent renewable generation, a variety of energy players considers new projects, which could increase the available capacity by up to 60% until the end of the decade. This paper analyzes the current development and evaluates the revenue potential as well as possible barriers. Overall, the prospects for new pumped-hydro storage plants have improved, even though profitability remains a major challenge
- …
