14,726 research outputs found
Generalized inverses applied to Pulse Width Modulation for static conversion: a first study
This paper points out the generic matrix approach to design Pulse Width Modulation strategies of three-phase Voltage Source Inverters. This well-known problem has infinitely many solutions, and many modulation methods already exist. This mathematical approach deserves to be explored by its rigor and mustidentify known but also new solution
Reduction of total harmonic distortion in power inverters
The output voltage of PWM power inverters shows harmonic distortion due to several causes; the main ones are the modulation algorithm, nonlinearities in the output filter, dead times, voltage drops across the switches and modulation of the dc bus voltage. The distortion is more evident when using low dc bus voltages. As a result, motors driven by these inverters have important torque pulsations. This work proposes to reduce the distortion produced by dead times and voltage drops across the switches using a simple algorithm that recalculates the width of each PWM pulse, while preserving the ideal area. By simulation, the THD was reduced from 18% to 0.29% in a single-phase inverter. The proposed algorithm only needs products and sums, so it is suitable for being implemented on a DSP with a very low processing load.Fil: Oliva, Alejandro Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Chiacchiarini, Hector Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Aymonino, Oscar Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Mandolesi, Pablo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentin
Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage
In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy
Comparison between flying capacitor and modular multilevel inverter
The paper describes the operational principle of flying capacitor and modular multilevel inverters. The detailed discussions of dc link capacitors voltage balancing methods for both inverters are given in order to enable fair comparison. The causes of dc link capacitors voltage imbalance in flying capacitor multilevel inverter with more than three levels are highlighted. Computer simulation is used to compare the performance of both inverters under several operating conditions
CPLD based controller for single phase inverters
The DC-AC converter, also known as inverter, converts DC power to AC power at
desired output voltage and frequency. The DC power input to the inverter is obtained
from an existing power supply. Nowadays inverters use high power switching
transistors either IGBT's and/or MOSFETs. In addition, the voltage and frequency of
the source can be adjustable. These single phase inverters and their operating principles
are analyzed in detail.
In this project, a full-bridge, single phase inverter that uses a digital Pulse Width
Modulation (PWM) to control the power switches at 18 kHz was constructed. The
concept of PWM with different strategies for inverters is described. A type of filter is
used to improve the distortion in the output waveform.
A design and implementation of PWM by using complex programmable logic device
(CPLD) from Altera MaxPlus II is constructed and programmed. The involved
software, hardware, and suitable algorithm to implement and generate the PWM are
developed in details. To verify the significant of this single phase inverter, the output
voltage will be tested with resistive load and inductive load
Five-level selective harmonic elimination PWM strategies and multicarrier phase-shifted sinusoidal PWM: A comparison
The multicarrier phase-shifted sinusoidal pulse-width modulation (MPS-SPWM) technique is well-known for its important advantage of offering an increased overall bandwidth as the number of carriers multiplied with their equal frequency directly controls the location of the dominant harmonics. In this paper, a five-level (line-to-neutral) multilevel selective harmonic elimination PWM (MSHE-PWM) strategy based on an equal number of switching transitions when compared against the previously mentioned technique is proposed. It is assumed that the four triangular carriers of the MPS-SPWM method have nine per unit frequency resulting in seventeen switching transitions for every quarter period. Requesting the same number of transitions from the MSHE-PWM allows the control of sixteen non-triplen harmonics. It is confirmed that the proposed MSHE-PWM offers significantly higher converter bandwidth along with higher modulation operating range. Selected results are presented to confirm the effectiveness of the proposed technique
Online control of AC/AC converter based SHEPWM technique
Conventional online control of AC/AC converter controlled by the selective harmonic elimination pulse width modulation technique (SHEPWM) is based on storing the offline calculated switching angle values in a form of lookup table. Then the required switching pattern of certain modulation index (M) is searched through the lookup table. This methodology suffers from limited system flexibility. This paper introduces a novel implementation scheme based on real-time calculation of the required SHEPWM switching pattern with linear control of the fundamental voltage component magnitude based on curve fitting technique for the exact switching angle trajectories. The accuracy of the derived polynomials is evaluated by calculating converter performance parameters using the approximated switching angles solutions obtained from the introduced method and the exact switching angles solutions. Detail of the introduced methodology is presented. Simulation and experimental results have been carried out to confirm the validity of the introduced algorithm
Multilevel Converters: An Enabling Technology for High-Power Applications
| Multilevel converters are considered today as the
state-of-the-art power-conversion systems for high-power and
power-quality demanding applications. This paper presents a
tutorial on this technology, covering the operating principle and
the different power circuit topologies, modulation methods,
technical issues and industry applications. Special attention is
given to established technology already found in industry with
more in-depth and self-contained information, while recent
advances and state-of-the-art contributions are addressed with
useful references. This paper serves as an introduction to the
subject for the not-familiarized reader, as well as an update or
reference for academics and practicing engineers working in
the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386
- …
