218,785 research outputs found
Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model
For a certain class of isolated quantum systems, we report the existence of
irreversible processes in which the energy is not dissipated. After a closed
cycle in which the initial energy distribution is fully recovered, the
expectation value of a symmetry-breaking observable changes from a value
different from zero in the initial state, to zero in the final state. This
entails the unavoidable loss of a certain amount of information, and
constitutes a source of irreversibility. We show that the von Neumann entropy
of time-averaged equilibrium states increases in the same magnitude as a
consequence of the process. We support this result by means of numerical
calculations in an experimentally feasible system, the Lipkin-Meshkov-Glick
model.Comment: 10 pages, 7 figure
Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations
In this concept paper, the development of strategies for the integration of
first-principles methods with crystallographic database mining for the
discovery and design of novel ferroelectric materials is discussed, drawing on
the results and experience derived from exploratory investigations on three
different systems: (1) the double perovskite Sr(SbMn)O as a
candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite
SbO; and (3) ferroelectric semiconductors with formula
P(S,Se). A variety of avenues for further research and
investigation are suggested, including automated structure type classification,
low-symmetry improper ferroelectrics, and high-throughput first-principles
searches for additional representatives of structural families with desirable
functional properties.Comment: 13 pages, 5 figures, 4 table
Nova-like Cataclysmic Variables in the Infrared
Novalike cataclysmic variables have persistently high mass transfer rates and prominent steady state accretion disks. We present an analysis of infrared observations of twelve novalikes obtained from the Two Micron All Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer All Sky Survey. The presence of an infrared excess at >3-5 microns over the expectation of a theoretical steady state accretion disk is ubiquitous in our sample. The strength of the infrared excess is not correlated with orbital period, but shows a statistically significant correlation (but shallow trend) with system inclination that might be partially (but not completely) linked to the increasing view of the cooler outer accretion disk and disk rim at higher inclinations. We discuss the possible origin of the infrared excess in terms of emission from bremsstrahlung or circumbinary dust, with either mechanism facilitated by the mass outflows (e.g., disk wind/corona, accretion stream overflow, and so on) present in novalikes. Our comparison of the relative advantages and disadvantages of either mechanism for explaining the observations suggests that the situation is rather ambiguous, largely circumstantial, and in need of stricter observational constraints.Peer reviewe
Accessibility impact of high-speed lines in peripheral regions: the case of the future line Madrid-Barcelona- Montpellier
Transforming floundering into success
We show how logic programs with "delays" can be transformed to programs
without delays in a way which preserves information concerning floundering
(also known as deadlock). This allows a declarative (model-theoretic),
bottom-up or goal independent approach to be used for analysis and debugging of
properties related to floundering. We rely on some previously introduced
restrictions on delay primitives and a key observation which allows properties
such as groundness to be analysed by approximating the (ground) success set.
This paper is to appear in Theory and Practice of Logic Programming (TPLP).
Keywords: Floundering, delays, coroutining, program analysis, abstract
interpretation, program transformation, declarative debuggingComment: Number of pages: 24 Number of figures: 9 Number of tables: non
A generic framework for context-sensitive analysis of modular programs
Context-sensitive analysis provides information which is potentially more accurate than that provided by context-free analysis. Such information can then be applied in order to validate/debug the program and/or to specialize the program obtaining important improvements. Unfortunately, context-sensitive analysis of modular programs poses important theoretical and practical problems. One solution, used in several proposals, is to resort to context-free analysis. Other proposals do address
context-sensitive analysis, but are only applicable when the description domain used satisfies rather restrictive properties. In this paper, we argüe that a general framework for context-sensitive analysis of modular programs, Le., one that allows using all the domains which have proved useful in practice in the non-modular setting, is indeed feasible and very useful. Driven by our experience in the design and implementation of analysis and specialization techniques in the context of CiaoPP, the Ciao
system preprocessor, in this paper we discuss a number of design goals for context-sensitive analysis of modular programs as well as the problems which arise in trying to meet these goals. We also provide a high-level description of a framework for analysis of modular programs which does
substantially meet these objectives. This framework is generic in that it can be instantiated in different ways in order to adapt to different contexts. Finally, the behavior of the different instantiations w.r.t. the design goals that motivate our work is also discussed
Recommended from our members
Design of Experiments Approach for Statistical Classification of Stereolithography Manufacturing Build Parameters: Effects of Build Orientation on Mechanical Properties for ASTM D-638 Type I Tensile Test Specimens of DSM Somos® 11120 Resin
A statistical design of experiments (DOE) approach was used to determine if specific build
orientation parameters impacted mechanical strength of fabricated parts. A single platform (10-
inch by 10 inch cross-section) on the 3D Systems Viper si2 machine was designed to hold 18,
ASTM D-638 Type I samples built in six different orientations (called Location) with three
samples built for each location. The DOE tested four factors: Location, Position, Axis, and
Layout. Each sample within a Location was labeled as Positions 1, 2, or 3 depending on the
distance from the center of the platform with Position 1 being the closest to the center. Samples
were fabricated parallel with the x-axis, y-axis, or 45o
to both axes (called Axis 1, 2, and 3,
respectively) and were fabricated either flat or on an edge relative to the x-y plane (called Layout
1 and 2, respectively). The results from the statistical analyses showed that Axis, Location, and
Position had no significant effect on UTS or E. However, Layout (or whether a sample was built
flat or on an edge) was shown to have a statistically significant effect on UTS and E (at a 95%
level of confidence). This result was not expected since a comparison of the average UTS for
each Layout showed only a 1.2% difference (6966 psi versus 7050 psi for samples built flat and
on an edge, respectively). Because of the small differences in means for UTS, the statistical
differences between Layout most likely would not have been identified without performing the
DOE. Furthermore, Layout was the only factor that tested different orientations of build layers
(or layer-to-layer interfaces) with respect to the sample part, and thus, it appears that the
orientation of the build layer with respect to the fabricated part has a significant effect on the
resulting mechanical properties. This study represents one of many to follow that is using
statistical analyses to identify and classify important fabrication parameters on mechanical
properties for layer manufactured parts. Although stereolithography is the focus of this work, the
techniques developed here can be applied to any layered manufacturing technology.Mechanical Engineerin
Quantum Mechanics on Multiply Connected Manifolds with Applications to One and Two Dimensional Anyons
In these lectures several aspects of anyon in one and two dimensions are
considered from the path integral formalism. This paper is based in a set of
four lectures given by the author in the "V Latinoamerican Workshop of
Particles and Fields, hel in Puebla, Mexico.Comment: 27pp, Late
- …
