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Abstract. Context-sensitive analysis provides information which is po-
tentially more accurate than that provided by context-free analysis. Such 
information can then be applied in order to validate/debug the program 
and/or to specialize the program obtaining important improvements. 
Unfortunately, context-sensitive analysis of modular programs poses im
portant theoretical and practical problems. One solution, used in several 
proposals, is to resort to context-free analysis. Other proposals do address 
context-sensitive analysis, but are only applicable when the description 
domain used satisfies rather restrictive properties. In this paper, we ar
güe that a general framework for context-sensitive analysis of modular 
programs, Le., one that allows using all the domains which have proved 
useful in practice in the non-modular setting, is indeed feasible and very 
useful. Driven by our experience in the design and implementation of 
analysis and specialization techniques in the context of CiaoPP, the Ciao 
system preprocessor, in this paper we discuss a number of design goals for 
context-sensitive analysis of modular programs as well as the problems 
which arise in trying to meet these goals. We also provide a high-level 
description of a framework for analysis of modular programs which does 
substantially meet these objectives. This framework is generic in that 
it can be instantiated in different ways in order to adapt to different 
contexts. Finally, the behavior of the different instantiations w.r.t. the 
design goals that motivate our work is also discussed. 

1 Introduction 

Analysis of logic programs has received considerable theoretical and practical 
attention. A number of successful compile-time techniques have been proposed 
and implemented which allow obtaining useful information on the program and 
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using such information to debug, validate, and specialize the program, obtain-
ing important improvements in correctness and efficiency. Unfortunately, most 
of the existing techniques are still only used in prototypes and, though numer-
ous experiments demónstrate their effectiveness, they have not made their way 
into existing real-life systems. Perhaps one of the reasons for this is that most of 
these techniques were originally designed to be applied to a complete, monolithic 
program, while programs in practice invariably have a more complex structure 
combining a number of user modules with system librarles. Clearly, organiz-
ing program code in this modular way has many practical advantages for both 
program development and maintenance. On the other hand, performing global 
techniques such as program analysis on modular programs differs from doing so 
in a monolithic setting in several interesting ways and poses non-trivial problems 
which must be solved. 

In this work we concéntrate on strict module systems in which procedures 
external to a module are visible to it only if they are part of its interface. The 
interface of a module usually contains the ñames of the exported procedures and 
the ñames of the procedures imported from other modules. The module can only 
import procedures which are among the ones exported by the other modules. 
Procedures which are not exported are not visible outside the module. 

Driven by our experience in the design and implementation of context-sensitive 
analysis and specialization techniques in the CiaoPP system [20,9], in this paper 
we present a high level description of a framework for analysis of modular pro
grams. This framework is generic in that it can be instantiated in different ways 
in order to adapt to different contexts. The correctness, accuracy, and efficiency 
of the different instantiations is discussed and compared. 

The analysis of modular programs has been addressed in a number of previous 
works. However, most of them have focused on specific analyses with particu
lar properties and using more or less ad-hoc techniques. In [6] a framework is 
proposed for performing compositional analysis of logic programs in a modu
lar fashion, using the concept of an open program, introduced in [2]. An open 
program is a program in which part of the code is not available to the ana-
lyzer. Nevertheless, this interesting framework is valid only for a particular set 
of abstract domains of analysis—those which are compositional. 

Another interesting framework for compositional analysis for logic programs 
is presented in [23], in this case, for binding-time analysis. Although the most 
natural way to describe abstract interpretation-based binding-time analyses is 
arguably to use a top-down, goal-dependent framework, in this work a goal-
independent analysis framework is used in order to simplify the handling of the 
issues stemming from modularity. The choice is based on the fact that context-
sensitivity brings important problems to a top-down analysis framework. Both 
this paper and [6] stress compositionality as a very attractive property, since 
it greatly facilitates modular analysis. However, there are many useful abstract 
domains which do not meet this property, and thus these approaches are not of 
general applicability. 



In [15] a control-flow analysis-based technique is proposed for cali graph con-
struction in the context of object oriented languages. Although there has been 
other work in this área, the novelty of this approach w.r.t. previous proposals 
is that it is context-sensitive. Also, [1] shows a way to perform modular class 
analysis by translating the object oriented program into open DÁTALO G pro-
grams, in the sense of [2]. These two contributions are tailored to speciñc analysis 
domains with particular properties, so an important part of their work is not 
generally applicable ñor reusable in a general framework. 

In [21] a two-phase analysis is proposed for incomplete imperative programs, 
starting with a fast, imprecise global analysis and then continuing with a (possi-
bly context sensitive) analysis for each module in the program. This approach is 
not abstract interpretation-based. It is interesting to see that it appears to follow 
from the theory of abstract interpretation that if in such a two-pass approach 
the ñrst pass "overshoots" the ñxed-point, the máximum precisión may not be 
recovered in the second pass. 

In [22] a method for performing sepárate control-flow analysis by means of 
abstract interpretation is proposed. This paper does not deal with the inter-
modular approach studied in the present work, although it does have points in 
common with our module-aware analysis framework (Section 5). However, in 
this work the initial information needed by the abstract interpretation-based 
analyzer is provided by other analysis techniques (types and effects techniques), 
instead of taking advantage of the actual results from the analysis of the rest of 
the modules in the program. 

A preliminary study of the extensión of analysis and specialization to the 
case of modular programs was presented in [19]. A full practical proposal for 
modular program analysis was presented in [4], which also presented some pre
liminary data from its implementation in the context of the Ciao system. Also, 
an implementation of [4] in the context of the HAL system [8] has been reported 
in [14]. 

The rest of the paper proceeds as follows: Section 2 presents a review of pro
gram analysis based on abstract interpretation and of the non-modular frame
work that we use as a starting point. Section 3 then presents some additional 
notation related to modular programs and a ñrst, simple approach to extending 
the framework to handling such modular programs: the "flattening" approach. 
This approach is used as baseline for comparison throughout the rest of the 
paper. Section 4 then identiñes a number of characteristics that are desirable 
of a modular analysis system and which the simple approach does not meet in 
general. Achieving (at least a subset of) these characteristics justiñes the more 
involved approach presented in the rest of the paper. To this end, Section 5 ñrst 
discusses the modiñcations made to the analysis framework for non-modular pro
grams in order to be able to handle one module at a time. Section 6 then presents 
the actual full framework for analysis of modular programs. The framework pro
posed is parametric on the scheduling policies. The following sections discuss two 
scheduling policies which are fundamentally different: manual scheduling (Sec
tion 7), which corresponds to a scenario where one or more users decide when 



and what modules to analyze individually (but in a context-sensitive way), such 
as in distributed program development, and automatic scheduling (Section 8), 
where a full scheduling policy automatically determines in which order the mod
ules will be analyzed and continúes until the process is completed (a ñxed-point 
is reached). Section 9 addresses some practical implementation issues, including 
persistence and handling of librarles. Finally, Section 10 compares the behavior 
of the different instantiations of the generic framework proposed together with 
that of the flattening approach w.r.t. the desirable design features discussed in 
Section 4, and presents some conclusions. 

2 A Non-Modular Context-Sensitive Analysis Framework 

The aim of context-sensitive program analysis is, for a particular description 
domain, to take a program and a set of initial cali patterns and to annotate the 
program with information about the current environment at each program point 
whenever that point is reached when executing calis described by the initial cali 
patterns. 

2.1 Program Analysis by Abstract Interpretation 

Abstract interpretation [7] is a technique for static program analysis in which 
execution of the program is simulated on a description (or abstract) domain 
(Da) which is simpler than the actual (or concrete) domain (D). Valúes in the 
description domain and sets of valúes in the actual domain are related via a pair 
of monotonic mappings (a,j): abstraction a : 2 —> Da and concretization 7 : 
Da^ 2 which form a Galois connection, i.e. 

Va; G 2D : j(a(x)) D x and VA G Da : a(j(X)) = A. 

The set of all possible descriptions represents a description domain Da which is 
usually a complete lattice or cpo for which all ascending chains are ñnite. Note 
that in general Z is induced by C and a (in such a way that VA, A' G Da : A Z 
A' -£>• 7(A) C 7(A')). Similarly, the operations of least upper bound (U) and 
greatest lower bound (n) mimic those of 2 in some precise sense. A description 
A G Da approximates a set of concrete valúes x G 2 if a(x) Z A. Correctness of 
abstract interpretation guarantees that the descriptions computed approximate 
all of the actual valúes which occur during execution of the program. 

Different description domains may be used which capture different properties 
with different accuracy and cost. Also, for a given description domain, program, 
and set of initial cali patterns there may be many different analysis graphs. 
However, for a given set of initial cali patterns, a program and abstract operations 
on the descriptions, there is a unique least analysis graph which gives the most 
precise information possible. 



2.2 The Generic Non-Modular Analysis Framework 

We will now briefly describe the main ingredients of a generic context-sensitive 
analysis framework which computes the least analysis graph. This framework 
generalizes the particular analysis algorithms used in systems such as PLAI 
[12,13], GAIA [5], and the CLP(72.) analyzer [11], and we believe captures the 
essence of most context-sensitive, non-modular analysis systems. More details 
on this generic framework can be found in [10,17]. 

We ñrst introduce some notation. CD and AD stand for descriptions in the 
abstract domain. The expression P : CD denotes a cali pattern. This consists of 
a predicate cali together with a cali description for that predicate cali. Similarly, 
P : AD denotes an answer pattern, though it will be referred to as AD when it 
is associated to a cali pattern P : CD for the same predicate cali. 

The least analysis graph for the program is implicitly represented in the 
algorithm by means of two data structures, the answer table and the dependency 
table. Given the information in these data structures it is straightforward to 
construct the graph and the associated program point annotations. The answer 
table contains entries of the form P : CD i—> AD. It is interpreted as: the answer 
pattern for calis of the form CD to P is AD. A dependency is of the form 
P : CDQ =>• -Bfcey : CD\. This is interpreted as follows: if the procedure P is 
called with description CDQ then this causes the procedure B to be called with 
description CD\. The subindex key can be used in order to uniquely identify the 
program point within P where B is called with calling pattern CD\. Dependency 
ares represent the ares in the program analysis graph from procedure calis to 
the corresponding cali pattern. 

Intuitively, different analysis algorithms correspond to different graph traver-
sal strategies which place entries in the answer table and dependency table as 
new nodes and ares in the program analysis graph are encountered. To capture 
the different graph traversal strategies used in different ñxed-point algorithms, 
we use a priority queue. The queue contains the events to process. Different pri-
ority strategies correspond to different analysis algorithms. Thus, the third, and 
ñnal, structure used in our generic framework is a tasks queue. 

When an event being added to the tasks queue is already in the queue, a single 
event with the máximum of the priorities is kept in the queue. Also, only one 
are of the form P : CD =>• B^ey : CD' for each tupie (P, CD, Bkey) exists in the 
dependency table: the last one added. The same holds for entries P : CD i—> AD 
for each tupie (P, CD) in the answer table. 

Figure 1 shows the architecture of the framework. The Code corresponds to 
the (source) code of the program to be analyzed. By Entries we denote the initial 
starting points for analysis. The box Description Domain Operations represents 
the deñnition of operations which are domain dependent. The circle represents 
the Analysis Engine, which has the three data-structures mentioned above, Le., 
the answer table, the dependency table, and the tasks queue. Initially, for each 
analysis these three structures are empty and the analysis engine takes care of 
processing the events on the priority queue by repeatedly removing the high-
est priority event and calling the appropriate event-handling function. This in 
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Fig. 1. Non-Modular Analysis Pramework 

tu rn consults and modiñes the contents of the answer and dependency tables. 
When the tasks queue becomes empty then the analysis engine has reached a 
ñxed-point. This implies tha t the least analysis graph has been found. We will 
use AnalysisJJ (Q,E) = (AT,DT) to denote tha t the analysis of program Q 
for initial descriptions E in domain Da produces the answer table AT with 
dependency table DT. 

2.3 Prede f ined P r o c e d u r e s 

In order to simplify their presentation, formalizations of program analysis often 
do not consider predefined procedures. However, in practice, program analysis 
implementations allow the use of predefined (language built-in and/or library) 
procedures5 in the programs to be analyzed. These external procedures whose 
code is not available in the program being analyzed are often handled in an ad-
hoc way. Thus, in fairness, non-modular program analyses are more accurately 
represented by adding to the framework a builtin procedure function which es-
sentially hardwires the answer table for these external procedures. This function 
is represented in Figure 1 by the box builtin procedure function. We will use CP 
and AP to denote, respectively, the set of all cali pat terns and the set of all 
answer pat terns. The builtin procedure function can be formalized as a function 
BF : CP —> AP. For all cali pat tern P : CD where P is a builtin procedure 
BF(P : CD) returns a description AD which is assumed to be correct in the 
sense tha t it is a safe approximation, i.e. an over-approximation of the actual 
answer pa t tern for P : CD. 

It is important to note tha t the da ta structures which are outside the anal
ysis engine, code, entries, description domain operations, and builtin procedure 
function are read-only. However, though the code and entries are supposed to 

In our modular design, a library can be treated simply as (yet another) module in 
the program. However, special practical considerations for them will be discussed in 
Section 9.3. 



change for the analysis of each particular program, the builtin procedure function 
can be considered to be ñxed, for each description domain Da, in tha t it does not 
vary from the analysis of one program to another. Indeed, it can be considered 
to be part of the analyzer. Thus, the builtin procedure function is not explicitly 
represented as an input to the analysis algorithm. 

3 The Flattening Approach to Modular Processing 

We star t by introducing some notation. We will use m and m' to denote mod
ules. Given a module m, by imports (m) we denote the set of modules which 
m imports. Figure 2 presents a modular program. Modules are represented as 
boxes and there is an arrow from m to m' iff m imports m'. In our example, 
imports(a) = {b, c}. By depends(m) we refer t o the set generated by the transi-
tive closure of imports, i.e. depends(m) is the least set such tha t imports(m) C 
depends{m) and m! £ depends{m) implies tha t imports(m') C depends{m). In 
our example, depends(a) = {b, c, d, e, / } . Note tha t there may be circular depen-
dencies among modules. In our example, e <G depends(d) and d <G depends(e). A 
module m is a leaf if depends(m) = 0. In our example, the only leaf module is 
/ . By callers(m) we denote the set of modules which import m. In the example, 
callers(e) = {b,c, d}. Also, we deñne related{m) = callers{m) U imports(m). In 
our example, related(b) = {a,d,e}. 

The program unit of a given module m is the ñnite set of modules con-
taining m and the modules on which m depends: program-unit(m) = {m} U 
depends(m). m is called the top-level module of its program unit. In our exam
ple, programjwait{a) = {a,b,c,d,e,f} and programjwait{¿) = {c,d,e,f}. A pro
gram unit U is self-contained in the sense tha t V m <G U : m' <G imported(m) —> 
m' G U. 

Fig. 2. An Example of Module Dependencies 

Several compilation tasks such as program analysis and specialization are 
traditionally considered global, as opposed to local. Usually, local tasks process 
one procedure at a t ime and all the information required for performing the task 
can be obtained by inspecting tha t procedure. In contrast, in global tasks the 
results of processing a part of the program (say, a procedure) may be needed 



in order to process other parts of the program. Thus, global processing often 
requires iterating on the whole program until a ñxed-point is reached. 

In a modular setting, it may well be the case that part of the information 
needed to perform the task on (a procedure in) module m has to be computed 
in modules other than m. We will refer to the information originated in modules 
different from m as inter-modular information in contrast to the information 
originated in m itself, which we will cali intra-modular. 

Example 1. In context-sensitive program analysis there is an information flow 
of both cali and success patterns to and from procedures in different modules. 
Thus, program analysis requires inter-modular information. For example, the 
module c receives cali patterns from module a since callers(c) = {a}, and it 
has to propágate the corresponding success patterns to a. In turn, c provides 
{e, / } = imports(c) with cali patterns and receives success patterns from them. 

3.1 Flattening a Program Unit vs. Modular Processing 

Applying a framework for non-modular programs to a module m has the diffi-
culty that m may not be self-contained. However, there should be no problem 
in applying the framework if m is a leaf module. Furthermore, given a global 
process such as program analysis, at least in principie, it is not obvious that 
it makes much sense to apply the process to a module m alone. In principie, 
it makes more sense to apply it to program units since they are conceptually 
self-contained. Thus, given a module m one natural approach seems to be to 
apply the tool (simultaneously) to all the modules in U = programjimit(rn). 

Given a program unit U it is always possible to build a single module my¡ot 

which is equivalent to U and which is a leaf. The process of constructing such a 
module m/ ¡ o t usually only amounts to renaming apart identiñers in the different 
modules in U so as to avoid ñame clashes. We will use flatten(U) = mfiat to de
note that the module m/ ¡ o t is the result of renaming apart the code in each mod
ule in U and concatenating its code into a monolithic module my¡o t . This points 
to a simple solution to the problem of processing modular programs (at least 
for the case in which all the code is available): to transform program_unit(m) 
into the equivalent monolithic program m / ¡ o t . It is then straightforward to apply 
any tool for non-modular programs to the leaf module m / ¡ o t . Figure 3 represents 
the case in which the non-modular analysis framework is used on the flattened 
program. 

Given the existence of an implementation for non-modular analysis, this ap
proach is often simple to apply. Also, this flattening approach has theoretical 
interest. It can be used, for example, in order to compare the efficiency of differ
ent approaches to modular handling of programs w.r.t. the flattening approach. 
However, as a practical way in which to actually perform analysis of program 
units this approach has important drawbacks. This issue will be discussed in 
more detail in Section 10. 
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Fig. 3. Using non-modular analysis on a flattened program 

4 Design Goals for Analysis of Modular Programs 

Before presenting our proposals for analysis of modular programs, we will discuss 
the main features which should be taken into account when designing and/or 
implementing a tool for context-sensitive analysis of modular programs. As often 
happens in practice, some of the features presented are conflicting with others 
and this might make it impossible to ñnd a framework which behaves optimally 
w.r.t. all of them. 

Module-Awareness We consider a framework module-aware when it has been 
designed with modules in mind. Thus, it is applicable to a module m by using the 
code of m and some "interface" information for the modules in imports(m). Such 
interface information will in general consist of a summary of previous analysis 
results for such modules, if such results are available, or a safe approximation if 
they are not. 

Though transforming a non-modular framework into a module-aware one 
may seem trivial, it requires identifying precisely which is the required informa
tion on the result of applying the tool in each of the modules in imports(m) 
which should be stored in order to apply the tool to TO. This corresponds in 
general to the inter-modular information. It is also desirable that the amount of 
such information be minimal. 

Example 2. The framework for non-modular analysis in Section 2 is indeed non-
modular since it requires the code of all procedures (except possibly for some 
predeñned ones) to be available to the analyzer. It will produce wrong results 
when applied to non-leaf modules since a missing procedure can only be deemed 
as an error, unless the framework is aware that such a procedure can be imported. 

Correctness The results of applying the tool to a module TO should produce 
results which are corred. The notion of correctness itself can in general be lifted 
from the non-modular case to the modular case without great difficulties. A more 
complex issue is how to extend a framework to the modular case in such a way 
that correctness is preserved. 



Accuracy Similarly, the analysis results for a module m should be as accurate 
as possible. The notion of accuracy can be deñned by comparing the analysis 
results with those which would be obtained using the flattening approach pre-
sented in Section 3.1 above, since the latter always computes the most accurate 
information possible, which corresponds to the least analysis graph. 

Termination A framework for analysis of modular programs should guarantee 
termination (at least) in all cases in which the flattening approach terminates 
(which, typically, is for every program). Such termination is guaranteed by choos-
ing description domains with some speciñc characteristics such as having ñnite 
height, ñnite ascending chains, etc., and/or incorporating a widening operator. 

Efficiency in Time The time required to apply the tool should be reasonable. 
We will understand "reasonable" as not over an acceptable threshold on the time 
taken using the flattening approach. 

Efficiency in Memory In general, one of the main expected advantages of the 
modular approach is that the total amount of memory required to handle each 
module separately should be smaller than that needed in the flattening approach. 

No Need for Analyzing All Cali Patterns Under certain circumstanees, applying 
a tool on a module m may require processing only a subset of the cali patterns 
rather than all cali patterns for m. In order to achieve this, the model must keep 
track of ñne-grained dependencies. This will allow marking exactly those cali 
patterns which need processing. Other cali patterns not marked do not need to 
be processed. 

Support for the Co-Existence of Múltiple Program Units/Applications In a mod
ular setting it is often the case that a particular module is used in several ap-
plications. Support for software reuse is thus a desirable feature. However, this 
poses additional and interesting challenges to the tools, some of which will be 
discussed in Section 9. 

Support for Source Changes What happens if the source of a module changes 
during processing? Some tools will not allow this at all and if it happens all 
the processing has to start again from scratch. This has the disadvantage that 
the tool is then not incremental since a (possibly minor) change in a module 
invalidates the information for all the program unit. Other tools may delete the 
information which may depend on the changed code, but still keep the informa
tion which does not depend on it. 

Persistence This feature indicates that the inter-modular information can be 
stored in a persistent médium, such as a ñle stored on disk or a datábase, and 
allow later recovery of such information. 
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5 Analysis of Modular Programs: The Local Level 

As a ñrst step towards introducing our analysis framework for modular programs, 
which will be presented in Section 6 below, in this section we discuss the main 
ingredients which have to be added to an analysis framework for non-modular 
programs in order to be able to handle one module at a time. 

Analyzing a module separately presents the difficulty tha t , from the point 
of view of analysis, the code to be analyzed is incomplete in the sense tha t the 
code for procedures imported from other modules is not available to analysis. 
More precisely, during analysis of a module m there may be calis P : CD such 
tha t the procedure P is not deñned in m but instead it is imported from another 
module m' <G imports(m). We refer t o determining the valué of AD to be used for 
P : CD i—> AD as the imported success problem. In addition, in order to obtain 
analysis information for m' which is as accurate as possible we need to somehow 
propágate the cali P : CD t o m! so tha t the next t ime m! is analyzed such a 
cali pa t te rn is taken into account. We refer t o this as the imported calis problem. 
Note tha t in this case analysis has t o be module-aware in order to determine 
whether a given procedure is either local or imported (or predeñned). 

Figure 4 shows the architecture of an analysis framework which is module-
aware. This framework is an extensión of the non-modular framework in Figure 1. 
One minor change is tha t the read/wri te da ta structures internal to the analysis 
engine have been renamed with the preñx "local". So now we have the local 
answer table, the local dependency table, and the local task queue. Also, the box 
which represents the code now contains m indicating tha t it contains the single 
module m. 

The shaded boxes in Figure 4 indicate the main differences w.r.t. the non-
modular framework. One is tha t in the module-aware framework there is an ad-
ditional read-only6 da ta structure, the global answer table, or GAT for short. Its 
contents are identical in format t o those in the answer table of the non-modular 
framework. There are however some differences: (1) the GAT contains analysis 

6 In fact, this data structure is read/write at the global level discussed in Section 6 
below, but it is read-only as regards our engine for analysis of one module. 
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results which were obtained previously to the current analysis step. (2) The GAT 
contains entries which correspond to predicates deñned in imports(m), whereas 
all entries in the local answer table (or LAT for short) are for predicates deñned 
in m itself. (3) Only information of exported predicates is available in GAT. The 
LAT contains information for all predicates in m regardless of whether they are 
exported or not. 

5.1 Solving the Imported Success Problem 

The second important difference is that the module-aware framework requires 
the use of a success policy, or SP for short, which is represented in Figure 4 with 
a shaded box surrounding the GAT. The SP can be seen as an intermediator 
between the GAT and the analysis engine. The behavior of the analysis engine for 
predicates deñned in m remains exactly as before. SP is needed because though 
the information in the GAT will be used in order to obtain answer patterns for 
imported predicates, given a cali pattern P : CD it will often be the case that 
an entry of exactly the form P : CD i—> AD does not exist in GAT. In such 
case, the information already present in GAT may be of valué in order to obtain 
a (temporary) answer pattern AD. Note that the GAT together with SP will 
allow solving the "imported success problem". 

In contrast, in many formalizations of non-modular analysis there is no ex-
plicit success policy. This is because if the cali pattern P : CD has not been 
analyzed yet, the analysis algorithm forces its computation. Thus, the results of 
analysis do not depend on any particular success policy: when analysis reaches 
a ñxed-point there is always an entry of the form P : CD i—> AD for any cali 
pattern P : CD which appears in the analysis graph. Unfortunately, in a mod
ular setting it is not directly possible to forcé the analysis of predicates deñned 
in other modules. Those modules may have already been analyzed or they may 
be analyzed in the future. We will simply do what we can given the information 
available in GAT. 

We will use QAT to denote the set of all global answer tables. The success 
policy can be formalized as a function SP : CP x QAT —> AV. Several success 
policies can be deñned which provide over- or under-approximations of the exact 
answer pattern AD~ with different degree of accuracy. Note that this exact valué 
AD~ is the one which the flattening approach would compute. In this work we 
consider two kinds of success policies, those which are guaranteed to always 
provide over-approximations, i.e. AD~ IZ SP(P : CD,AT), and those which 
provide under-approximations, i.e., SP(P : CD,AT) IZ AD~. We will use the 
superscript + (resp _ ) to indicate that a success policy over-approximates (resp. 
under-approximates). As will be discussed later in the paper, both over- and 
under-approximations are useful in different contexts and for different purposes. 
Since it is always required to know whether a success policy over- or under-
approximates we will mark all success policies in either way. 



Example 3. A very precise over-approximating success policy is the function 
SP¿U deñned below, already proposed in [19]: 

SPXU (P : CD, GAT) = topmost( CD) nAD>ea AD' where 

app = {AD' | (P : CD' ^ AD') G GAT and CD E CD'} 

The function topmost obtains the topmost answer pattern for a cali pattern. The 
notion of topmost description was already introduced in [3]. Informally, a topmost 
description keeps those properties which are downwards closed whereas it loses 
those ones which are not. Note that taking T as answer pattern is a correct over-
approximation, but often less accurate than using topmost substitutions. For 
example, if a variable is known to be ground in the cali pattern, it will continué 
being ground in the answer pattern and taking T as the answer pattern would 
lose this information. However, the fact that a variable is free on cali does not 
guarantee that it will keep on being free on success. 

We refer to this success policy as SP¿U because it uses all entries in GAT 
which are applicable to the cali pattern in the sense that the cali pattern already 
computed is more general than the cali being analyzed. 

Example 4- The counter-part of SP¿U is the function SP¿U which is deñned as: 

SPMl{P : CD,GAT) = U^^AD' where 
app = {AD' | (P : CD' ^ AD') G GAT and CD' E CD} 

Note the change in the direction of the applicability relation (the cali pattern in 
the GAT has to be more particular than the one being analyzed) and the use 
of the lub operator instead of the glb. Also, note that taking, for example, ± as 
an under-approximation is correct but SP¿U is more precise. 

5.2 Solving the Imported Calis Problem 

The third important difference w.r.t. the non-modular framework is the use of 
the temporary answer table (or TAT for short) and which is represented as a 
shaded box within the analysis engine of Figure 4. This answer table will be used 
to store cali patterns for imported predicates which are not yet present in GAT 
and whose answer pattern has been obtained (approximated) using the success 
policy on the entries currently stored in GAT. The TAT is used as a cache for 
imported cali patterns and their corresponding answer patterns, thus avoiding 
having to repeatedly apply the success policy on the GAT for equivalent cali 
patterns, which is an expensive operation. Also, after analysis of the current 
module is ñnished, the existence of the TAT simpliñes the way in which the 
global data structures need to be updated. This will be discussed in more detail 
in Section 6 below. 

We use MAnalysisD (m, Em, SP, GAT) = (LATm, LDTm, TATM) to denote 
that the module-aware analysis framework returns (LATm, LDTm, TATM) when 
applied to module m for initial cali patterns Em with SP and GAT. 



Fig. 5. A two-level framework for analysis of modular programs 

6 Analysis of Modular Programs: The Global Level 

After discussing the local-level issues which appear when analyzing a module, in 
this section we present a complete framework for the analysis of modular pro
grams. Since analysis is a global task, an analysis framework should not only deal 
with local-level information, but also with global-level information. A graphical 
representation of our framework is depicted in Figure 5. The main idea is that we 
have to add a higher-level component to the framework which takes care of the 
inter-modular information, as opposed to the intra-modular information which 
is handled by the local-level subsystem described in the previous section. 

As a result, analysis of modular programs is best seen as a two-level process. 
Note that the inner, lightly shaded, rectangle corresponds exactly to Figure 4 
as it is a module-aware analysis system. It is interesting to see how the data 
structures in the global and local levéis are indeed very similar. The similari-
ties and differences between the GAT and LAT have been discussed already in 
Section 5 above. Regarding the global and local dependency tables (GDT and 
LDT respectively), they are used in order to be able to propágate as precisely as 
possible which parts of the analysis graph have to be recomputed. The GDT is 
used in order to add events to the global task queue (GTQ) whereas the LDT is 
used to add events (ares) to be (re-)analyzed to the local task queue (LTQ). We 
can deñne the events to be processed at the global level using different levéis of 
granularity. As usual, the ñner-grained these events are, the more detailed and 
thus more effective the handling of the events can be. One obvious possibility 
is to use modules as events. This means that all cali patterns which correspond 
to a module are handled simultaneously whenever the module is selected at 
the global level. A more reñned possibility is to keep events at the cali pattern 
level. This, together with sufficiently detailed information in the GDT will allow 
incrementality at the cali pattern level rather than module level. 



6.1 Parameters of the Framework 

The framework has three parameters. The program unit corresponds to the pro-
gram unit to be analyzed. Note that the code may not be physically stored in 
the tool's memory since it is already on external storage. However, the frame
work may maintain some information on the program unit, such as dependen-
cies among modules, strongly connected components, and any other information 
which may be useful in order to guide analysis. In the ñgure the program unit is 
represented, as an example, containing a program unit composed of four mod
ules. The second parameter is the entry policy, which determines the way in 
which the GTQ and GAT should be initialized whenever analysis of a program 
unit is started. Depending on how the success policy is deñned, entries for all 
procedures exported in each of the modules in the program unit may be required 
in GAT and GTQ or not. 

Finally, the scheduling policy determines the order in which the entries in the 
GTQ should be processed. The efficiency with which the ñxed-point is reached 
can differ very much from some scheduling policies to others. Since the framework 
presented in Figure 5 has just one analysis engine, processing a cali pattern in 
a different module from that currently loaded has a relevant cost associated to 
it, since this often requires context switching from the current module to a new 
module. Thus, it is often a good idea to process all or many of the cali patterns 
in GTQ which correspond to the module which is being analyzed in order to 
minimize the number of times the analysis tool has to switch from one module 
to another. In the rest of the paper we consider that events in GTQ are answer 
patterns which would beneñt from (re-) analysis. The role of the scheduling policy 
is to select a set of patterns from GTQ which must necessarily belong to the 
same module m to be analyzed. Note that a scheduling policy based on modules 
can always be obtained by simply processing at each analysis step all events in 
GTQ which correspond to m. 

6.2 How the Global Level Works 

As already mentioned, analysis of a modular program starts by initializing 
the global data structures as indicated by the entry policy. At each step, the 
scheduling policy is used to determine the set Em of entries for module m 
which are to be processed. They are removed from GTQ and copied into the 
data structure Entries. The code of the module m is also copied to code. Then, 
MAnalysis{m,Em,SP) = (LATm,LDTm, TATm) is computed. Then, the global 
data structures are updated, as detailed in Section 6.3 below. As a result of this, 
new events may be added to GTQ. Analysis terminates when there are no more 
events to process in GTQ or when the scheduling strategy does not select any 
further events. 

Each entry in GTQ is of one of the following three types: over-approximation, 
under-approximation, or invalid, according to the reason why they should be re-
analyzed. An entry P : CP i—> AP which is an over-approximation is marked 
P : CP i-^+ AP. This indicates that the answer pattern AP is possibly an 



over-approximation since it depends on a cali pattern whose answer pattern has 
been determined to be an over-approximation. In other words, the accuracy of 
P : CP i—> AP may be improved by re-analysis. Similarly, under-approximations 
are marked P : CP i—>_ AP and they indicate that AP is probably an under-
approximation since it depends on a cali pattern whose success pattern has 
increased. As a result, the cali pattern should be re-analyzed to guarantee cor-
rectness. Finally invalid entries are marked P : CP t-^1- AP. They indicate that 
the relation between the current answer pattern AP and one resulting from re-
computing it for P : CP is unpredictable. This often indicates that the source 
code of the module has changed in a way that the analysis results for some of 
the exported procedures are just incompatible with previous ones. Handling this 
kind of events is discussed in more detail in Section 6.4 below. 

6.3 Updating the Global State 

In Section 5 it has been presented how the local level subsystem, given a module 
m, can compute the corresponding LATm, LDTm, and TATm. However, once 
analysis of module m is done, the analysis results of module m have to be used in 
order to update the global state prior to starting analysis of any other module. 

We now briefly discuss how this updating is done. For each initial cali pattern 
P : CP in Entries we compare the previous answer pattern AP with the newly 
computed one AP'. If AP = AP' then this cali pattern has not been affected by 
the latest analysis. However, it is also possible that the answer pattern "evolves" 
in different analysis iterations. If we use SP+, the natural thing is that the new 
answer pattern is more speciñc than the previous one, Le., AP' C AP. In such 
case those cali patterns which depend on P : CP can also improve their success 
pattern. We use the GDT to lócate all such patterns and we add them to the 
GTQ with the + mark. Conversely, if we use SP~, the natural thing is that 
AP C AP'. We then add events marked _ . 

In a typical situation, and if modules do not change, all events in GTQ will 
be approximations of the same sign. This depends on the success policy used. 
If the success policy is of kind SP+ (resp. SP~) then the events which will be 
added to GTQ will also be over-approximations (resp. under-approximations). 
In turn, when they are processed they will introduce other over-approximations 
(resp. under-approximations). 

The TATm is also used to update the global state. All entries in TATm are 
added to GAT and GTQ marked with the same sign as the success policy used. 
Last, we also have to update the GDT. For this, we ñrst erase all entries for 
any of the cali patterns which we have just analyzed, and which are thus stored 
in entriesm. Then we add an entry of the form P : CP —> H : CP' for each 
imported procedure H which is reachable with cali pattern CP' from an initial 
cali pattern P : CP. Note that this can easily be determined using LDT. 



6.4 Recovering from an Invalid State 

If code of a module m has changed since it was last analyzed, it can be the 
case that the global information available is invalid. This happens when in the 
results of re-analysis of m any of the exported predicates has an answer pattern 
which is incompatible with the previous results. In this case, all information 
dependent on the new answer patterns might have become invalid, as discussed 
in Section 6.2. The question is how to minimize the impact of such a situation. 

The simplest solution is to (transitively) erase any information of other mod
ules which depends on the invalidated one. This solution may not be very ef-
ñcient, as it ignores all results of previous analyses of other modules even if 
the changes performed in the module are minor, or only affect directly related 
modules. Another alternative is to launch an automatic recovery process as soon 
as invalid analysis results are detected (see [4]). This process has to reanalyze 
the modules directly affected by the invalidated answer pattern(s). If the new 
answer patterns coincide with the oíd ones then the changes do not affect this 
module and the process terminates. Otherwise, it continúes transitively with the 
directly related modules. 

7 Using a Manual Scheduling Policy 

Consider, for example, the relevant case of independent development of different 
parts of the program, which can then even be performed in parallel by differ
ent teams. In this setting, it makes sense that the analyzer performs its job on 
the current module without analyzing other modules in the program unit, i.e., 
it allows sepárate analysis. This will typically allow early detection of compile-
time errors in the current module without having to wait for the code of the 
dependent modules to be fully developed. Moreover, in this setting, it is the user 
(or users) who decide when and what to analyze. Thus, we refer to this as the 
manual setting. Furthermore, we assume that in this setting analysis for a mod
ule m has to do its best with only the code for m plus the results of previous 
analyses (if any) of the modules in depends(m). These assumptions have im-
portant implications. The setting allows the users of different modules to decide 
when they should be processed. And thus, any module could be (re-)analyzed 
at any point. As a result, strong requirements must hold for the whole approach 
to be correct. In return, the results obtained may not be optimal (in terms of 
error detection, degree of optimization, etc., depending on the particular tools) 
w.r.t. those achievable using automatic scheduling. 

So the question is, is there any combination of the three parameters of the 
global analysis framework which allows handling the manual setting? The an
swer to this question is yes. Our earlier paper [4] essentially describes such an 
instantiation of the analysis framework. In the terminology of the current paper, 
the model in [4] corresponds to waiting until the user requests that a module m 
in the program unit U be analyzed. The success policy is over-approximating. 
This guarantees that in the absence of invalidated entries in the GTQ all events 
will be marked + . This means that the analysis information available is correct, 



though perhaps not as accurate as possible. Since the scheduling is manual, no 
other analyses should be triggered until the user requires so. Finally, the entry 
policy is simply to include in GTQ an event such as P : T i—>+ T per predicate 
exported by any of the modules in U to be analyzed (it is called all entry policy). 
The initial events are required to be so general to keep the overall correctness 
of the analysis while allowing the users to choose the order of the modules to 
be analyzed.7 The model in [4] has the very important feature of being guar-
anteed to always provide correct results without the need of reaching a global 
ñxed-point. 

8 Using an Automatic Scheduling Policy 

In spite of the evident interest of the manual setting, there are situations in which 
the user is interested in obtaining the most accurate analysis results possible. For 
this, it may be required to analyze the modules in the program unit several times 
in order to converge to a distributed global ñxed-point. We will refer to this as 
the automatic setting, in which the user decides when to start global analysis 
of a program unit. From then on it is the global analysis framework by means 
of its scheduling policy who decides when and what to analyze. Note that the 
manual and automatic settings roughly correspond to scenario 1 and scenario 2 
of [19] respectively. Since we admit circular dependencies among modules, the 
strategy has to be able to deal with such circularities correctly and efficiently 
without entering infinite loops. The question now is what are the valúes for the 
different parameters to our generic framework which should be used in order 
to obtain satisfactory results? One major difference of the automatic setting 
w.r.t. the manual setting is that in addition to over-approximations, now also 
under-approximations can be used. This is because though under-approximations 
do not guarantee correctness in general, when an inter-modular ñxed-point is 
reached, analysis results are guaranteed to be correct. Below we consider the use 
of SP+ and SP~ separately. 

8.1 Using Over-Approximating Success Policies 

If a success policy SP+ is used, we are in a situation similar to the one in Sec-
tion 7 in that independently of how many times each module has been analyzed, 
if there have not been any code changes, the analysis results are guaranteed to 
be correct. The main difference is that now the system keeps on automatically 
requesting further analysis steps until a ñxed-point is reached. 

Regarding the entry policy, an important observation is that in the automatic 
mode, much as in the case of intra-modular analysis, inter-modular analysis 
will eventually compute all cali patterns which are needed in order to obtain 
information which is correct w.r.t. calis, Le., the set of computed cali patterns 

7 In the case of the Ciao system it is possible to use entry declarations (see for exam-
ple [16]) in order to improve the set of initial cali patterns for analysis. 



covers all possible calis which may occur at run-time for the class of initial calis 
considered, i.e., those for the top-level of the program unit U. This will allow us 
to use a different entry policy from that used in the manual mode: rather than 
introducing events of the form P : T i—>+ T in the GTQ for exported predicates 
in all modules in U, it suffices to introduce them for predicates exported by the 
top-level of U (this entry policy is named top-level entry policy). This has several 
important advantages: (1) It avoids analyzing all predicates for the most general 
cali pattern, since this may end up introducing plenty of cali patterns which are 
not used in our particular program unit U. (2) It will help to have a more guided 
scheduling policy since there are no requests for processing a module until it is 
certain that a cali pattern should be analyzed. (3) If múltiple specialization is 
being performed based on the set of cali patterns for each procedure (possibly 
proceeded by a minimization step for eliminating useless versions [18]), the fact 
that a cali pattern with the most general cali pattern exists implies that a non-
optimized versión of the predicate must always exist. Another way out of this 
problem is to eliminate useless cali patterns once an inter-modular ñxed-point 
has been reached. 

Since reaching a global ñxed-point can be a costly task, one interesting pos-
sibility can be the introduction of a time-out. The user can ask the system to 
request (re-)analysis as needed towards improving the analysis information. How-
ever, if after performing n analysis steps the time-out is reached before analysis 
n + 1 is ñnished, the global state corresponding to state n is guaranteed to be 
correct. In this case, the entry policy used has to be to introduce most general 
cali patterns for all exported predicates, either before starting analysis or when 
a time-out is reached. 

8.2 Using Under-Approximating Success Policies 

Another alternative is to use SP~. As a result, the analysis results are not 
guaranteed to be correct until an inter-modular ñxed-point is reached. Thus, 
it may take a large amount of time to perform this global analysis. On the 
other hand, once a ñxed-point is reached, the accuracy which will be obtained 
is optimal, since it corresponds to the least analysis graph, which is exactly the 
same which the flattening approach would have obtained. 

Regarding the entry policy, the same discussion as above applies. The only 
difference being that the GTQ should be initialized with events of the form 
P : T ^ " 1 since now the framework computes under-approximations. Clearly, 
_L is an under-approximation of any description. 

Another important thing to note is that, since the ñnal results of automatic 
analysis are optimal, they do not depend on the use of a particular success policy 
SP[~ or another SP2~ • Of course, the efficiency using SP[~ can be very different 
from that obtained using SP2~ • 



8.3 Hybrid policy 

In practice we may wish to use a manual scheduling policy with an over-approxi
mating success policy during program development, and then use an automatic 
scheduling policy with an under-approximating success policy just before pro
gram reléase, so as to ensure that the analysis is as precise as possible, thus 
allowing as much optimization as possible in the ñnal versión. 

Fortunately, in such a situation we can often reuse much of the analysis in-
formation obtained using the over-approximating success policy. The reason is 
that if the analysis with the over-approximating success policy has reached a 
ñxed-point, the answers obtained for module m are as accurate as those ob
tained with an under-approximating success policy as long as there are no cyclic 
dependencies between the modules in depends(m). Thus in the common case 
that no modules are mutually dependent we can simply use the answer tables 
from the manual scheduling policy and use an automatic scheduling policy with 
an over-approximating success policy to obtain the ñxed-point. Even in the case 
that some modules are mutually dependent we can use this technique to com
pute the answers for the modules which do not contain cyclic dependencies or 
do not depend on modules that contain them (e.g., leaf-modules). 

8.4 Computation of an Intermodular Fixed-Point 

Determining the optimal order in which the different modules in the program 
unit should be analyzed in order to get to a ñxed-point as efficiently as possible 
is not trivial and it is the topic of ongoing work. 

Finding good scheduling strategies for intra-modular analysis is a topic which 
has received considerable attention and highly optimized algorithms exist which 
converge to a ñxed-point quickly. Unfortunately, it is not possible to directly 
transíate the same heuristics used in the intra-modular case to the inter-modular 
case. In the inter-modular case we have to take into account the time required 
to change from analysis of one module to another since this typically means 
reading a new module from disk. Thus, requests to process cali patterns have 
to be grouped by modules in order to reduce the number of times we change 
context. 

Taking the heuristics in [17,10] as a starting point we are investigating and 
experimenting with different scheduling policies which take into account different 
aspects of the structure of the program unit such as dependencies, strongly 
connected components, etc. with promising results. It also remains to be explored 
which of the approaches to success policy results in more efficiently reaching a 
global ñxed-point and whether the heuristics to be applied in either case coincide 
or are mostly different. 

9 Some Practical Implementation Issues 

In this section we discuss several issues not addressed in the previous sections 
and which are very important in order to have practical implementations of 



context-sensitive analysis systems. These issues are related to the persistence of 
global information and the analysis of librarles. 

9.1 Making Global Information Persistent 

The two-level framework presented in Section 6 needs to keep information both at 
the local and global level. One relevant question, due to its practical implications, 
is where this global information actually resides. One possibility is to have the 
global analysis tool running continuously as a kind of "compilation server" which 
stores the global state in its program memory. In a manual setting, this global 
tool would wait for the user(s) to place requests to analyze modules. When a 
request is received, the corresponding module is analyzed for the appropriate cali 
patterns and using the global information available at the time in the memory of 
the global analyzer. After analysis terminates, the global information is updated 
and remembered by the process for subsequent requests. If we are in an automatic 
setting, the global tool itself requests the analysis of different modules until a 
global ñxed-point (or a time-out) is reached. 

This approach outlined above is not fully persistent in the sense that if the 
computer crashes all information about the global state is lost and analysis 
would have to start from scratch again. In order to implement the more general 
kind of persistence discussed in Section 4, a way to save and restore the global 
state of analysis is needed. This requires storing the valué of the three global-
level data-structures: GAT, GDT, and GTQ. A level of granularity which seems 
appropriate in this context is clearly the module level. Le., the global state 
of analysis is saved and restored between two consecutive steps of (module) 
analysis, but not during the analysis of a given module, which, from the point 
of view of the two-level framework, is an atomic operation. 
The ability to save and restore the global state of analysis has several advantages: 

1. The global tool does not need to be running continuously: it can save its state, 
stop, restart when needed, and restore the global state. This is specially 
interesting when using a manual scheduling policy, since two consecutive 
analysis requests can be separated by large intervals. 

2. Even if the automatic scheduling policy is used, any information about the 
global state which is still valid can be directly used. This means that analysis 
can be incremental in the sense that (global level) analysis information which 
is known to be valid is reused. 

9.2 Splitting Global Information 

Consider the analysis of module b in the program unit U = {a, b, c, d, e, f,g, h} 
depicted in Figure 6. In principie, the global state includes information regard-
ing exported predicates in any of the modules in U. As a result, if we can save 
the global state to disk and restore it, this would involve storing and retrieving 
information about all modules in U. However, analysis of b only requires retriev
ing the information for modules in related(m). The small boxes which appear on 



the side of every module represent the portion of the global structures related to 
each module. To analyze the module b, the information of the global tables that 
we need is that of modules a, d and e, as indicated by the dashed curved line. 

This is straightforward to do in practice by splitting the information in the 
global data structures into several parts, each one associated to a module. This 
allows easily identifying the pieces of global information which are needed in 
order to process a given module. 

This optimization of the handling of global information has several advan-
tages: 

1. The time required to save and restore the information to disk is reduced 
since the total amount of information transferred is smaller. 

2. The use of the data structures during analysis can be more efficient since 
search space is reduced. 

3. The total amount of memory required in order to analyze a module can 
be signiñcantly reduced: only the local data structures plus a possibly very 
reduced part of the global data structures are actually required to analyze 
the module. 

One question which we have intentionally left open is where the persistent 
information should reside. In fact, all the discussion above is independent on how 
and where the global state is stored, as long as it is persistent. One possibility 
is to use a datábase which stores the global state and information is grouped 
by modules in order to minimize the amount of information which has to be 
retrieved or updated for each analysis. Another, very common, possibility is to 
store the global information associated to each module to disk, in the same way 
as temporary information (such as relocatable code) is stored in many tradi-
tional compilers. In fact, the actual implementation of modular analysis in both 
CiaoPP and HAL [14] systems is based on this idea: a module m has a m.reg 
ñle associated to it which contains the part of the global data structures which 
are associated to m. 

9.3 Handling Libraries and Predefined Modules 

Many compilers and program development systems include a large number of 
predeñned modules and libraries which can be readily reused by programmers 
-an obviously interesting feature since it greatly reduces the time required to de-
velop applications. From the point of view of analysis, these predeñned modules 
and libraries differ from user programs in a number of ways: 

1. They are designed with reusability in mind and thus they can be used by a 
comparatively large number of user programs. 

2. Sometimes the source code for libraries and predeñned modules may not be 
available. One common reason for this is that they are implemented in a 
lower-level language. 



3. The total amount of code available as librarles can be extremely large. Thus, 
reanalyzing the librarles over and over again for slightly different cali patterns 
can be costly. 

Given these characteristics, it makes sense to develop a specialized treatment 
for librarles. We propose the following scheme. For each library module, the 
analysis results for a sufficient set of cali patterns should be precomputed. This 
set should cover all possible correct cali patterns for the library. In addition, 
the answer pattern for those cali patterns have to be an over-approximation of 
the actual answers, independently of whether a SP+ or SP~ success policy is 
used for the programs which use such library. In addition, in order to provide 
more accurate information, more particular cali patterns which are expected to 
occur often in programs which use that library module can also be included. 
This information is added to the GAT of the program units which use the 
library. Thus, the success policy will be able to use this information directly 
for obtaining answer patterns. The reason for requiring pre-computed answer 
patterns for library modules to be over-approximations is that, much in the 
same way as for predeñned procedures, even if an automatic scheduling policy is 
used, library modules are (in principie) not analyzed for calling patterns other 
than those which are pre-computed. Note that this is conceptually equivalent 
to considering the interface information of library modules read-only, since any 
program using them can read this information, but no additional cali patterns 
will be analyzed. As a result, the global level framework will ignore new cali 
patterns to library procedures that might be generated during the analysis of 
user programs. More precisely, entries of the form P : CP i—> AP in TAT such 
that P is a library predicate do not need to be added to the GTQ since they will 
not be analyzed. In addition, no entries of the form P : CP —> H : CP' need be 
added to GDT if H is a library predicate, since the answer pattern for library 
predicates is never modiñed and thus those dependencies are useless. 

Deciding which is the best set of cali patterns for which a library module 
should be analyzed is a non-trivial problem. One possibility can be to extract 
cali patterns from correct programs which use the library and study which are 
the cali patterns most often used. Another possibility is to have the library 
developer decide which are the cali patterns of interest. 

In spite of the considerations above, it is sometimes the case that we are 
interested in treating a library module using the general scheme, Le., effectively 
considering the library information writable and allowing the analysis of new cali 
patterns and the storage of the corresponding results. This can be interesting if 
the source code of a library is available and the set of initial cali patterns for 
which it has been analyzed is not very representative. Note that hopefully this 
will happen often only when the library is relatively new. Once the code of the 
library stabilizes and a good set of initial patterns is obtained, it will generally 
be considered read-only. Allowing reanalysis of a library can also be useful when 
we are interested in using the analysis results from such cali patterns to optimize 
the code of the library for the particular cases that correspond to those calis. 



Fig. 6. Using Distributed Scheduling and Local Data Structures 

For this case it may be interesting to store the corresponding information locally 
to the calling module, as opposed to inserting it into the library directories. 

In summary, the implementation of the framework needs to treat librarles in 
a special way and also allow applying the general scheme for some designated 
library modules. 

10 Discussion and Conclusions 

Table 1 summarizes some characteristics of the different instantiations of the 
generic framework presented in the paper, in terms of the design features dis-
cussed in Section 4. The corresponding entries for the flattening approach of 
Section 3 -our baseline as usual- are also provided for comparison, listed in the 
column labeled Flattening. The Manual column lists the characteristics of the 
manual scheduling policy described in Section 7. The last two columns corre-
spond to the two instantiations of the automatic scheduling policy, which were 
presented in Sections 8.1 and 8.2 respectively. Automatic+ (resp. Automatic-) 
indicate that an over-approximating (resp. under-approximating) success policy 
is used. 

The ñrst three rows, i.e., Scheduling policy, Success policy, and Entry policy 
correspond to the valúes of these parameters in each instantiation. 

AU instances of the framework for modular analysis are module-aware, in 
contrast to Flattening, which is not. Both instances described of the modular 
framework proposed are incremental, in the sense that only a subset (instead of 
every module) in the program unit needs to be re-analyzed, and they also both 
achieve the goal of not needing to reanalyze all cali patterns every time a module 
is considered for analysis. 

Regarding correctness, both the Flattening and Automatic- approaches have 
in common that correctness is only guaranteed when analysis comes to an end. 
This is because the approximations used are under-approximations and thus the 
results are only guaranteed to be correct when a (global) ñxed-point is reached. 



However, in the Manual and Automatic+ approaches the information in the global 
state is correct after any number of local analysis steps. 

On the other hand, both the Flattening and Automatic- approaches are guar-
anteed to obtain the most accurate information possible, i.e., the least analysis 
graph, when a ñxed-point is reached. In contrast, the Manual approach cannot 
guarantee optimal accuracy for two reasons. The ñrst one is that there is no 
guarantee that modules will be processed the number of times that is necessary 
for an inter-modular ñxed-point to be reached. Second, even if such a ñxed-point 
is reached, it may not be the least ñxed-point. This is because this approach uses 
over-approximations of the analysis results which are improved ("narrowed") in 
the different analysis iterations until a ñxed-point is reached. On the other hand, 
if there are no circular dependencies among predicates in different modules, then 
the ñxed-point obtained will be the least one, i.e., the most accurate. 

Regarding efficiency in time we will consider two cases. The ñrst one is when 
we have to perform analysis of the program unit from scratch. In this case, 
Flattening can be highly optimized in order to converge quickly to a ñxed-point. 
In contrast, in this situation the instances of the modular framework have the 
disadvantage that Ioading and unloading modules during analysis introduces a 
signiñcant overhead. As a result, in order to maintain the number of context 
changes low, cali patterns may be solicited from imported modules which use 
temporary information and which are not needed in the ñnal analysis graph. 
These cali patterns which end up being useless are known as spurious versions. 
This problem also occurs in Flattening, though to a much lesser degree if good 
algorithms are used. Therefore, the modular approaches may end up performing 
work which is speculative, and thus the total amount of work performed in the 
automatic approaches to modular analysis is in principie an upper bound of that 
needed in Flattening. 

On the other hand, consider the second case in which a relatively large 
amount of intra-modular analysis has already taken place for the modules to be 
analyzed in our programming unit and that the global information is persistent. 
In this case, the automatic approaches can update their global data structures 
using the precomputed information, rather than starting from scratch as is done 
in Flattening. In such a case the automatic approaches may perform much less 
work than Flattening. It is to be expected that once module m becomes stable, 
i.e., it is fully developed, it will quickly be analyzed for a relatively large set 
of calling patterns. In such a case it is likely that it will be possible to analyze 
any other module m! which uses m by simply reusing the existing analysis re
sults for m. This is specially true in the case of library modules, as discussed in 
Section 9.3. 

Regarding the efficiency in terms of memory, it is to be expected that the 
instances of the modular framework will outperform the non-modular, flatten
ing approach. This was in fact already observed in the case of [4]. Indeed, one 
important practical difficulty that appears during the (monolithic) analysis of 
large programs is that the amount of information which is kept in memory is 
very large and the storage needed can become too large to ñt in memory. The 



Table 1. Comparison of Approaches to Modular Analysis 

Scheduling policy 
Success policy 
Entry policy 
Module-aware 
No Rean. of all CPs 
Correct 
Accurate 
Efficient in time 
Efficient in memory 
Termination 

Flattening 
automatic 

sp-
top-level 

no 
no 

at fixed-point 
yes 
yes 
no 

ñnite ase. chains 

Manual 
manual 

SP+ 
all 
yes 
n /a 
yes 
no 
n/a 
yes 

ñnite ase. chains 

Automatic+ 

automatic 
SP+ 

top-level 
yes 
yes 
yes 

no circularities 
no 
yes 

ñnite chains 

Automatic 
automatic 

sp-
top-level 

yes 
yes 

at fixed-point 
yes 
no 
yes 

finite ase. chains 

modular framework proposed needs less memory because: a) at each point in 
time, only one module requires to be loaded in the code área, and b) the local 
answer table only needs to hold enfries for the module being analyzed, and not 
for other modules. Also, in general, the total amount of memory required to 
store the global data structures is not very high when compared to the memory 
required locally for the different modules. In addition, not all the global data 
structures are required when analyzing a module m, but only that associated 
with the modules in related(m). 

Finally, regarding termination, except for Flattening, in which only one level 
of termination is required, the three other cases require two levéis of termination: 
at the intra-modular and at the inter-modular level. In Flattening, since analysis 
results increase monotonically until a ñxed-point is reached, termination is often 
guaranteed by considering description domains which do not contain infinite as-
cending chains: no matter what the current description is, top (T), which is triv-
ially guaranteed to be a fixed-point, is only a finite number of steps away. Exactly 
the same condition is required for guaranteeing termination of Automatic-. The 
manual approach only requires guaranteeing intra-modular termination since the 
number of cali patterns analyzed is finite. However, in the case Automatic+, finite 
ascending chains are required for ensuring local termination and finite descend-
ing chains are required for ensuring global termination. As a result, termination 
requires domains with finite chains, or appropriate widening operators. 

In summary, the proposed two-level generic framework for analysis and its 
instantiations meet a good subset of our stated objectives. We hope the dis-
cussion and the concrete proposal presented in this paper will provide a better 
understanding of the handling of context-sensitive program analysis on modular 
programs and contribute to the widespread use of such context-sensitive analy
sis techniques for modular programs in practical systems. An implementation of 
the framework, as a generalization of the pre-existing CiaoPP modular analysis 
components, is currently being completed. In this context, we are experiment-
ing with different scheduling policies for the global level, for concrete, practical 
analysis situations. 
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