
A Generic Framework for Context-Sensitive
Analysis of Modular Programs

Germán Puebla 1 , Jesús Correas1 , Manuel V. Hermenegildo1 '2 , Francisco
Bueno 1 , María García de la Banda 3 , Kim Marr iot t 3 , and Peter J. Stuckey4

1 Department of Computer Science
Technical University of Madrid (UPM)

2 Depts. of Computer Science and Electrical and Computer Engineering
University of New México (UNM)

3 School of Computer Science and Software Engineering
Monash University

4 Department of Computer Science and Software Engineering
University of Melbourne

{german,j correas,herme,bueno}@f i.upm.e s

{mbanda,marriott}@mail.csse.monash.edu.au

pjs@cs.mu.oz.au

Abstract. Context-sensitive analysis provides information which is po-
tentially more accurate than that provided by context-free analysis. Such
information can then be applied in order to validate/debug the program
and/or to specialize the program obtaining important improvements.
Unfortunately, context-sensitive analysis of modular programs poses im
portant theoretical and practical problems. One solution, used in several
proposals, is to resort to context-free analysis. Other proposals do address
context-sensitive analysis, but are only applicable when the description
domain used satisfies rather restrictive properties. In this paper, we ar
güe that a general framework for context-sensitive analysis of modular
programs, Le., one that allows using all the domains which have proved
useful in practice in the non-modular setting, is indeed feasible and very
useful. Driven by our experience in the design and implementation of
analysis and specialization techniques in the context of CiaoPP, the Ciao
system preprocessor, in this paper we discuss a number of design goals for
context-sensitive analysis of modular programs as well as the problems
which arise in trying to meet these goals. We also provide a high-level
description of a framework for analysis of modular programs which does
substantially meet these objectives. This framework is generic in that
it can be instantiated in different ways in order to adapt to different
contexts. Finally, the behavior of the different instantiations w.r.t. the
design goals that motivate our work is also discussed.

1 Introduction

Analysis of logic programs has received considerable theoretical and practical
attention. A number of successful compile-time techniques have been proposed
and implemented which allow obtaining useful information on the program and

mailto:pjs@cs.mu.oz.au

using such information to debug, validate, and specialize the program, obtain-
ing important improvements in correctness and efficiency. Unfortunately, most
of the existing techniques are still only used in prototypes and, though numer-
ous experiments demónstrate their effectiveness, they have not made their way
into existing real-life systems. Perhaps one of the reasons for this is that most of
these techniques were originally designed to be applied to a complete, monolithic
program, while programs in practice invariably have a more complex structure
combining a number of user modules with system librarles. Clearly, organiz-
ing program code in this modular way has many practical advantages for both
program development and maintenance. On the other hand, performing global
techniques such as program analysis on modular programs differs from doing so
in a monolithic setting in several interesting ways and poses non-trivial problems
which must be solved.

In this work we concéntrate on strict module systems in which procedures
external to a module are visible to it only if they are part of its interface. The
interface of a module usually contains the ñames of the exported procedures and
the ñames of the procedures imported from other modules. The module can only
import procedures which are among the ones exported by the other modules.
Procedures which are not exported are not visible outside the module.

Driven by our experience in the design and implementation of context-sensitive
analysis and specialization techniques in the CiaoPP system [20,9], in this paper
we present a high level description of a framework for analysis of modular pro
grams. This framework is generic in that it can be instantiated in different ways
in order to adapt to different contexts. The correctness, accuracy, and efficiency
of the different instantiations is discussed and compared.

The analysis of modular programs has been addressed in a number of previous
works. However, most of them have focused on specific analyses with particu
lar properties and using more or less ad-hoc techniques. In [6] a framework is
proposed for performing compositional analysis of logic programs in a modu
lar fashion, using the concept of an open program, introduced in [2]. An open
program is a program in which part of the code is not available to the ana-
lyzer. Nevertheless, this interesting framework is valid only for a particular set
of abstract domains of analysis—those which are compositional.

Another interesting framework for compositional analysis for logic programs
is presented in [23], in this case, for binding-time analysis. Although the most
natural way to describe abstract interpretation-based binding-time analyses is
arguably to use a top-down, goal-dependent framework, in this work a goal-
independent analysis framework is used in order to simplify the handling of the
issues stemming from modularity. The choice is based on the fact that context-
sensitivity brings important problems to a top-down analysis framework. Both
this paper and [6] stress compositionality as a very attractive property, since
it greatly facilitates modular analysis. However, there are many useful abstract
domains which do not meet this property, and thus these approaches are not of
general applicability.

In [15] a control-flow analysis-based technique is proposed for cali graph con-
struction in the context of object oriented languages. Although there has been
other work in this área, the novelty of this approach w.r.t. previous proposals
is that it is context-sensitive. Also, [1] shows a way to perform modular class
analysis by translating the object oriented program into open DÁTALO G pro-
grams, in the sense of [2]. These two contributions are tailored to speciñc analysis
domains with particular properties, so an important part of their work is not
generally applicable ñor reusable in a general framework.

In [21] a two-phase analysis is proposed for incomplete imperative programs,
starting with a fast, imprecise global analysis and then continuing with a (possi-
bly context sensitive) analysis for each module in the program. This approach is
not abstract interpretation-based. It is interesting to see that it appears to follow
from the theory of abstract interpretation that if in such a two-pass approach
the ñrst pass "overshoots" the ñxed-point, the máximum precisión may not be
recovered in the second pass.

In [22] a method for performing sepárate control-flow analysis by means of
abstract interpretation is proposed. This paper does not deal with the inter-
modular approach studied in the present work, although it does have points in
common with our module-aware analysis framework (Section 5). However, in
this work the initial information needed by the abstract interpretation-based
analyzer is provided by other analysis techniques (types and effects techniques),
instead of taking advantage of the actual results from the analysis of the rest of
the modules in the program.

A preliminary study of the extensión of analysis and specialization to the
case of modular programs was presented in [19]. A full practical proposal for
modular program analysis was presented in [4], which also presented some pre
liminary data from its implementation in the context of the Ciao system. Also,
an implementation of [4] in the context of the HAL system [8] has been reported
in [14].

The rest of the paper proceeds as follows: Section 2 presents a review of pro
gram analysis based on abstract interpretation and of the non-modular frame
work that we use as a starting point. Section 3 then presents some additional
notation related to modular programs and a ñrst, simple approach to extending
the framework to handling such modular programs: the "flattening" approach.
This approach is used as baseline for comparison throughout the rest of the
paper. Section 4 then identiñes a number of characteristics that are desirable
of a modular analysis system and which the simple approach does not meet in
general. Achieving (at least a subset of) these characteristics justiñes the more
involved approach presented in the rest of the paper. To this end, Section 5 ñrst
discusses the modiñcations made to the analysis framework for non-modular pro
grams in order to be able to handle one module at a time. Section 6 then presents
the actual full framework for analysis of modular programs. The framework pro
posed is parametric on the scheduling policies. The following sections discuss two
scheduling policies which are fundamentally different: manual scheduling (Sec
tion 7), which corresponds to a scenario where one or more users decide when

and what modules to analyze individually (but in a context-sensitive way), such
as in distributed program development, and automatic scheduling (Section 8),
where a full scheduling policy automatically determines in which order the mod
ules will be analyzed and continúes until the process is completed (a ñxed-point
is reached). Section 9 addresses some practical implementation issues, including
persistence and handling of librarles. Finally, Section 10 compares the behavior
of the different instantiations of the generic framework proposed together with
that of the flattening approach w.r.t. the desirable design features discussed in
Section 4, and presents some conclusions.

2 A Non-Modular Context-Sensitive Analysis Framework

The aim of context-sensitive program analysis is, for a particular description
domain, to take a program and a set of initial cali patterns and to annotate the
program with information about the current environment at each program point
whenever that point is reached when executing calis described by the initial cali
patterns.

2.1 Program Analysis by Abstract Interpretation

Abstract interpretation [7] is a technique for static program analysis in which
execution of the program is simulated on a description (or abstract) domain
(Da) which is simpler than the actual (or concrete) domain (D). Valúes in the
description domain and sets of valúes in the actual domain are related via a pair
of monotonic mappings (a,j): abstraction a : 2 —> Da and concretization 7 :
Da^ 2 which form a Galois connection, i.e.

Va; G 2D : j(a(x)) D x and VA G Da : a(j(X)) = A.

The set of all possible descriptions represents a description domain Da which is
usually a complete lattice or cpo for which all ascending chains are ñnite. Note
that in general Z is induced by C and a (in such a way that VA, A' G Da : A Z
A' -£>• 7(A) C 7(A')). Similarly, the operations of least upper bound (U) and
greatest lower bound (n) mimic those of 2 in some precise sense. A description
A G Da approximates a set of concrete valúes x G 2 if a(x) Z A. Correctness of
abstract interpretation guarantees that the descriptions computed approximate
all of the actual valúes which occur during execution of the program.

Different description domains may be used which capture different properties
with different accuracy and cost. Also, for a given description domain, program,
and set of initial cali patterns there may be many different analysis graphs.
However, for a given set of initial cali patterns, a program and abstract operations
on the descriptions, there is a unique least analysis graph which gives the most
precise information possible.

2.2 The Generic Non-Modular Analysis Framework

We will now briefly describe the main ingredients of a generic context-sensitive
analysis framework which computes the least analysis graph. This framework
generalizes the particular analysis algorithms used in systems such as PLAI
[12,13], GAIA [5], and the CLP(72.) analyzer [11], and we believe captures the
essence of most context-sensitive, non-modular analysis systems. More details
on this generic framework can be found in [10,17].

We ñrst introduce some notation. CD and AD stand for descriptions in the
abstract domain. The expression P : CD denotes a cali pattern. This consists of
a predicate cali together with a cali description for that predicate cali. Similarly,
P : AD denotes an answer pattern, though it will be referred to as AD when it
is associated to a cali pattern P : CD for the same predicate cali.

The least analysis graph for the program is implicitly represented in the
algorithm by means of two data structures, the answer table and the dependency
table. Given the information in these data structures it is straightforward to
construct the graph and the associated program point annotations. The answer
table contains entries of the form P : CD i—> AD. It is interpreted as: the answer
pattern for calis of the form CD to P is AD. A dependency is of the form
P : CDQ =>• -Bfcey : CD\. This is interpreted as follows: if the procedure P is
called with description CDQ then this causes the procedure B to be called with
description CD\. The subindex key can be used in order to uniquely identify the
program point within P where B is called with calling pattern CD\. Dependency
ares represent the ares in the program analysis graph from procedure calis to
the corresponding cali pattern.

Intuitively, different analysis algorithms correspond to different graph traver-
sal strategies which place entries in the answer table and dependency table as
new nodes and ares in the program analysis graph are encountered. To capture
the different graph traversal strategies used in different ñxed-point algorithms,
we use a priority queue. The queue contains the events to process. Different pri-
ority strategies correspond to different analysis algorithms. Thus, the third, and
ñnal, structure used in our generic framework is a tasks queue.

When an event being added to the tasks queue is already in the queue, a single
event with the máximum of the priorities is kept in the queue. Also, only one
are of the form P : CD =>• B^ey : CD' for each tupie (P, CD, Bkey) exists in the
dependency table: the last one added. The same holds for entries P : CD i—> AD
for each tupie (P, CD) in the answer table.

Figure 1 shows the architecture of the framework. The Code corresponds to
the (source) code of the program to be analyzed. By Entries we denote the initial
starting points for analysis. The box Description Domain Operations represents
the deñnition of operations which are domain dependent. The circle represents
the Analysis Engine, which has the three data-structures mentioned above, Le.,
the answer table, the dependency table, and the tasks queue. Initially, for each
analysis these three structures are empty and the analysis engine takes care of
processing the events on the priority queue by repeatedly removing the high-
est priority event and calling the appropriate event-handling function. This in

ENGINE
Description

Domain
Operations

Builtin
Procedure
Function

Answer
Table

Depende ncy
Table

Tasks
Queue

Fig. 1. Non-Modular Analysis Pramework

tu rn consults and modiñes the contents of the answer and dependency tables.
When the tasks queue becomes empty then the analysis engine has reached a
ñxed-point. This implies tha t the least analysis graph has been found. We will
use AnalysisJJ (Q,E) = (AT,DT) to denote tha t the analysis of program Q
for initial descriptions E in domain Da produces the answer table AT with
dependency table DT.

2.3 Prede f ined P r o c e d u r e s

In order to simplify their presentation, formalizations of program analysis often
do not consider predefined procedures. However, in practice, program analysis
implementations allow the use of predefined (language built-in and/or library)
procedures5 in the programs to be analyzed. These external procedures whose
code is not available in the program being analyzed are often handled in an ad-
hoc way. Thus, in fairness, non-modular program analyses are more accurately
represented by adding to the framework a builtin procedure function which es-
sentially hardwires the answer table for these external procedures. This function
is represented in Figure 1 by the box builtin procedure function. We will use CP
and AP to denote, respectively, the set of all cali pat terns and the set of all
answer pat terns. The builtin procedure function can be formalized as a function
BF : CP —> AP. For all cali pat tern P : CD where P is a builtin procedure
BF(P : CD) returns a description AD which is assumed to be correct in the
sense tha t it is a safe approximation, i.e. an over-approximation of the actual
answer pa t tern for P : CD.

It is important to note tha t the da ta structures which are outside the anal
ysis engine, code, entries, description domain operations, and builtin procedure
function are read-only. However, though the code and entries are supposed to

In our modular design, a library can be treated simply as (yet another) module in
the program. However, special practical considerations for them will be discussed in
Section 9.3.

change for the analysis of each particular program, the builtin procedure function
can be considered to be ñxed, for each description domain Da, in tha t it does not
vary from the analysis of one program to another. Indeed, it can be considered
to be part of the analyzer. Thus, the builtin procedure function is not explicitly
represented as an input to the analysis algorithm.

3 The Flattening Approach to Modular Processing

We star t by introducing some notation. We will use m and m' to denote mod
ules. Given a module m, by imports (m) we denote the set of modules which
m imports. Figure 2 presents a modular program. Modules are represented as
boxes and there is an arrow from m to m' iff m imports m'. In our example,
imports(a) = {b, c}. By depends(m) we refer t o the set generated by the transi-
tive closure of imports, i.e. depends(m) is the least set such tha t imports(m) C
depends{m) and m! £ depends{m) implies tha t imports(m') C depends{m). In
our example, depends(a) = {b, c, d, e, / } . Note tha t there may be circular depen-
dencies among modules. In our example, e <G depends(d) and d <G depends(e). A
module m is a leaf if depends(m) = 0. In our example, the only leaf module is
/ . By callers(m) we denote the set of modules which import m. In the example,
callers(e) = {b,c, d}. Also, we deñne related{m) = callers{m) U imports(m). In
our example, related(b) = {a,d,e}.

The program unit of a given module m is the ñnite set of modules con-
taining m and the modules on which m depends: program-unit(m) = {m} U
depends(m). m is called the top-level module of its program unit. In our exam
ple, programjwait{a) = {a,b,c,d,e,f} and programjwait{¿) = {c,d,e,f}. A pro
gram unit U is self-contained in the sense tha t V m <G U : m' <G imported(m) —>
m' G U.

Fig. 2. An Example of Module Dependencies

Several compilation tasks such as program analysis and specialization are
traditionally considered global, as opposed to local. Usually, local tasks process
one procedure at a t ime and all the information required for performing the task
can be obtained by inspecting tha t procedure. In contrast, in global tasks the
results of processing a part of the program (say, a procedure) may be needed

in order to process other parts of the program. Thus, global processing often
requires iterating on the whole program until a ñxed-point is reached.

In a modular setting, it may well be the case that part of the information
needed to perform the task on (a procedure in) module m has to be computed
in modules other than m. We will refer to the information originated in modules
different from m as inter-modular information in contrast to the information
originated in m itself, which we will cali intra-modular.

Example 1. In context-sensitive program analysis there is an information flow
of both cali and success patterns to and from procedures in different modules.
Thus, program analysis requires inter-modular information. For example, the
module c receives cali patterns from module a since callers(c) = {a}, and it
has to propágate the corresponding success patterns to a. In turn, c provides
{e, / } = imports(c) with cali patterns and receives success patterns from them.

3.1 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a module m has the diffi-
culty that m may not be self-contained. However, there should be no problem
in applying the framework if m is a leaf module. Furthermore, given a global
process such as program analysis, at least in principie, it is not obvious that
it makes much sense to apply the process to a module m alone. In principie,
it makes more sense to apply it to program units since they are conceptually
self-contained. Thus, given a module m one natural approach seems to be to
apply the tool (simultaneously) to all the modules in U = programjimit(rn).

Given a program unit U it is always possible to build a single module my¡ot

which is equivalent to U and which is a leaf. The process of constructing such a
module m/ ¡ o t usually only amounts to renaming apart identiñers in the different
modules in U so as to avoid ñame clashes. We will use flatten(U) = mfiat to de
note that the module m/ ¡ o t is the result of renaming apart the code in each mod
ule in U and concatenating its code into a monolithic module my¡o t . This points
to a simple solution to the problem of processing modular programs (at least
for the case in which all the code is available): to transform program_unit(m)
into the equivalent monolithic program m / ¡ o t . It is then straightforward to apply
any tool for non-modular programs to the leaf module m / ¡ o t . Figure 3 represents
the case in which the non-modular analysis framework is used on the flattened
program.

Given the existence of an implementation for non-modular analysis, this ap
proach is often simple to apply. Also, this flattening approach has theoretical
interest. It can be used, for example, in order to compare the efficiency of differ
ent approaches to modular handling of programs w.r.t. the flattening approach.
However, as a practical way in which to actually perform analysis of program
units this approach has important drawbacks. This issue will be discussed in
more detail in Section 10.

b

a

c

d

a

b

c

d

Enfries

Description
Domain

Operations

Builtin
Procedure
Function

Answer
Table

ENGINE

Dependency
Table Queue

Fig. 3. Using non-modular analysis on a flattened program

4 Design Goals for Analysis of Modular Programs

Before presenting our proposals for analysis of modular programs, we will discuss
the main features which should be taken into account when designing and/or
implementing a tool for context-sensitive analysis of modular programs. As often
happens in practice, some of the features presented are conflicting with others
and this might make it impossible to ñnd a framework which behaves optimally
w.r.t. all of them.

Module-Awareness We consider a framework module-aware when it has been
designed with modules in mind. Thus, it is applicable to a module m by using the
code of m and some "interface" information for the modules in imports(m). Such
interface information will in general consist of a summary of previous analysis
results for such modules, if such results are available, or a safe approximation if
they are not.

Though transforming a non-modular framework into a module-aware one
may seem trivial, it requires identifying precisely which is the required informa
tion on the result of applying the tool in each of the modules in imports(m)
which should be stored in order to apply the tool to TO. This corresponds in
general to the inter-modular information. It is also desirable that the amount of
such information be minimal.

Example 2. The framework for non-modular analysis in Section 2 is indeed non-
modular since it requires the code of all procedures (except possibly for some
predeñned ones) to be available to the analyzer. It will produce wrong results
when applied to non-leaf modules since a missing procedure can only be deemed
as an error, unless the framework is aware that such a procedure can be imported.

Correctness The results of applying the tool to a module TO should produce
results which are corred. The notion of correctness itself can in general be lifted
from the non-modular case to the modular case without great difficulties. A more
complex issue is how to extend a framework to the modular case in such a way
that correctness is preserved.

Accuracy Similarly, the analysis results for a module m should be as accurate
as possible. The notion of accuracy can be deñned by comparing the analysis
results with those which would be obtained using the flattening approach pre-
sented in Section 3.1 above, since the latter always computes the most accurate
information possible, which corresponds to the least analysis graph.

Termination A framework for analysis of modular programs should guarantee
termination (at least) in all cases in which the flattening approach terminates
(which, typically, is for every program). Such termination is guaranteed by choos-
ing description domains with some speciñc characteristics such as having ñnite
height, ñnite ascending chains, etc., and/or incorporating a widening operator.

Efficiency in Time The time required to apply the tool should be reasonable.
We will understand "reasonable" as not over an acceptable threshold on the time
taken using the flattening approach.

Efficiency in Memory In general, one of the main expected advantages of the
modular approach is that the total amount of memory required to handle each
module separately should be smaller than that needed in the flattening approach.

No Need for Analyzing All Cali Patterns Under certain circumstanees, applying
a tool on a module m may require processing only a subset of the cali patterns
rather than all cali patterns for m. In order to achieve this, the model must keep
track of ñne-grained dependencies. This will allow marking exactly those cali
patterns which need processing. Other cali patterns not marked do not need to
be processed.

Support for the Co-Existence of Múltiple Program Units/Applications In a mod
ular setting it is often the case that a particular module is used in several ap-
plications. Support for software reuse is thus a desirable feature. However, this
poses additional and interesting challenges to the tools, some of which will be
discussed in Section 9.

Support for Source Changes What happens if the source of a module changes
during processing? Some tools will not allow this at all and if it happens all
the processing has to start again from scratch. This has the disadvantage that
the tool is then not incremental since a (possibly minor) change in a module
invalidates the information for all the program unit. Other tools may delete the
information which may depend on the changed code, but still keep the informa
tion which does not depend on it.

Persistence This feature indicates that the inter-modular information can be
stored in a persistent médium, such as a ñle stored on disk or a datábase, and
allow later recovery of such information.

Description
Domain

Operations

Builtin
Procedurt
Function

Fig. 4. Module-aware analysis framework

5 Analysis of Modular Programs: The Local Level

As a ñrst step towards introducing our analysis framework for modular programs,
which will be presented in Section 6 below, in this section we discuss the main
ingredients which have to be added to an analysis framework for non-modular
programs in order to be able to handle one module at a time.

Analyzing a module separately presents the difficulty tha t , from the point
of view of analysis, the code to be analyzed is incomplete in the sense tha t the
code for procedures imported from other modules is not available to analysis.
More precisely, during analysis of a module m there may be calis P : CD such
tha t the procedure P is not deñned in m but instead it is imported from another
module m' <G imports(m). We refer t o determining the valué of AD to be used for
P : CD i—> AD as the imported success problem. In addition, in order to obtain
analysis information for m' which is as accurate as possible we need to somehow
propágate the cali P : CD t o m! so tha t the next t ime m! is analyzed such a
cali pa t te rn is taken into account. We refer t o this as the imported calis problem.
Note tha t in this case analysis has t o be module-aware in order to determine
whether a given procedure is either local or imported (or predeñned).

Figure 4 shows the architecture of an analysis framework which is module-
aware. This framework is an extensión of the non-modular framework in Figure 1.
One minor change is tha t the read/wri te da ta structures internal to the analysis
engine have been renamed with the preñx "local". So now we have the local
answer table, the local dependency table, and the local task queue. Also, the box
which represents the code now contains m indicating tha t it contains the single
module m.

The shaded boxes in Figure 4 indicate the main differences w.r.t. the non-
modular framework. One is tha t in the module-aware framework there is an ad-
ditional read-only6 da ta structure, the global answer table, or GAT for short. Its
contents are identical in format t o those in the answer table of the non-modular
framework. There are however some differences: (1) the GAT contains analysis

6 In fact, this data structure is read/write at the global level discussed in Section 6
below, but it is read-only as regards our engine for analysis of one module.

Success policy

Global
Answer
Table

Local
Answer
Table

Local
Dependency

Table

Local
Tasks
Queue

Temporary
Answer Table

results which were obtained previously to the current analysis step. (2) The GAT
contains entries which correspond to predicates deñned in imports(m), whereas
all entries in the local answer table (or LAT for short) are for predicates deñned
in m itself. (3) Only information of exported predicates is available in GAT. The
LAT contains information for all predicates in m regardless of whether they are
exported or not.

5.1 Solving the Imported Success Problem

The second important difference is that the module-aware framework requires
the use of a success policy, or SP for short, which is represented in Figure 4 with
a shaded box surrounding the GAT. The SP can be seen as an intermediator
between the GAT and the analysis engine. The behavior of the analysis engine for
predicates deñned in m remains exactly as before. SP is needed because though
the information in the GAT will be used in order to obtain answer patterns for
imported predicates, given a cali pattern P : CD it will often be the case that
an entry of exactly the form P : CD i—> AD does not exist in GAT. In such
case, the information already present in GAT may be of valué in order to obtain
a (temporary) answer pattern AD. Note that the GAT together with SP will
allow solving the "imported success problem".

In contrast, in many formalizations of non-modular analysis there is no ex-
plicit success policy. This is because if the cali pattern P : CD has not been
analyzed yet, the analysis algorithm forces its computation. Thus, the results of
analysis do not depend on any particular success policy: when analysis reaches
a ñxed-point there is always an entry of the form P : CD i—> AD for any cali
pattern P : CD which appears in the analysis graph. Unfortunately, in a mod
ular setting it is not directly possible to forcé the analysis of predicates deñned
in other modules. Those modules may have already been analyzed or they may
be analyzed in the future. We will simply do what we can given the information
available in GAT.

We will use QAT to denote the set of all global answer tables. The success
policy can be formalized as a function SP : CP x QAT —> AV. Several success
policies can be deñned which provide over- or under-approximations of the exact
answer pattern AD~ with different degree of accuracy. Note that this exact valué
AD~ is the one which the flattening approach would compute. In this work we
consider two kinds of success policies, those which are guaranteed to always
provide over-approximations, i.e. AD~ IZ SP(P : CD,AT), and those which
provide under-approximations, i.e., SP(P : CD,AT) IZ AD~. We will use the
superscript + (resp _) to indicate that a success policy over-approximates (resp.
under-approximates). As will be discussed later in the paper, both over- and
under-approximations are useful in different contexts and for different purposes.
Since it is always required to know whether a success policy over- or under-
approximates we will mark all success policies in either way.

Example 3. A very precise over-approximating success policy is the function
SP¿U deñned below, already proposed in [19]:

SPXU (P : CD, GAT) = topmost(CD) nAD>ea AD' where

app = {AD' | (P : CD' ^ AD') G GAT and CD E CD'}

The function topmost obtains the topmost answer pattern for a cali pattern. The
notion of topmost description was already introduced in [3]. Informally, a topmost
description keeps those properties which are downwards closed whereas it loses
those ones which are not. Note that taking T as answer pattern is a correct over-
approximation, but often less accurate than using topmost substitutions. For
example, if a variable is known to be ground in the cali pattern, it will continué
being ground in the answer pattern and taking T as the answer pattern would
lose this information. However, the fact that a variable is free on cali does not
guarantee that it will keep on being free on success.

We refer to this success policy as SP¿U because it uses all entries in GAT
which are applicable to the cali pattern in the sense that the cali pattern already
computed is more general than the cali being analyzed.

Example 4- The counter-part of SP¿U is the function SP¿U which is deñned as:

SPMl{P : CD,GAT) = U^^AD' where
app = {AD' | (P : CD' ^ AD') G GAT and CD' E CD}

Note the change in the direction of the applicability relation (the cali pattern in
the GAT has to be more particular than the one being analyzed) and the use
of the lub operator instead of the glb. Also, note that taking, for example, ± as
an under-approximation is correct but SP¿U is more precise.

5.2 Solving the Imported Calis Problem

The third important difference w.r.t. the non-modular framework is the use of
the temporary answer table (or TAT for short) and which is represented as a
shaded box within the analysis engine of Figure 4. This answer table will be used
to store cali patterns for imported predicates which are not yet present in GAT
and whose answer pattern has been obtained (approximated) using the success
policy on the entries currently stored in GAT. The TAT is used as a cache for
imported cali patterns and their corresponding answer patterns, thus avoiding
having to repeatedly apply the success policy on the GAT for equivalent cali
patterns, which is an expensive operation. Also, after analysis of the current
module is ñnished, the existence of the TAT simpliñes the way in which the
global data structures need to be updated. This will be discussed in more detail
in Section 6 below.

We use MAnalysisD (m, Em, SP, GAT) = (LATm, LDTm, TATM) to denote
that the module-aware analysis framework returns (LATm, LDTm, TATM) when
applied to module m for initial cali patterns Em with SP and GAT.

Fig. 5. A two-level framework for analysis of modular programs

6 Analysis of Modular Programs: The Global Level

After discussing the local-level issues which appear when analyzing a module, in
this section we present a complete framework for the analysis of modular pro
grams. Since analysis is a global task, an analysis framework should not only deal
with local-level information, but also with global-level information. A graphical
representation of our framework is depicted in Figure 5. The main idea is that we
have to add a higher-level component to the framework which takes care of the
inter-modular information, as opposed to the intra-modular information which
is handled by the local-level subsystem described in the previous section.

As a result, analysis of modular programs is best seen as a two-level process.
Note that the inner, lightly shaded, rectangle corresponds exactly to Figure 4
as it is a module-aware analysis system. It is interesting to see how the data
structures in the global and local levéis are indeed very similar. The similari-
ties and differences between the GAT and LAT have been discussed already in
Section 5 above. Regarding the global and local dependency tables (GDT and
LDT respectively), they are used in order to be able to propágate as precisely as
possible which parts of the analysis graph have to be recomputed. The GDT is
used in order to add events to the global task queue (GTQ) whereas the LDT is
used to add events (ares) to be (re-)analyzed to the local task queue (LTQ). We
can deñne the events to be processed at the global level using different levéis of
granularity. As usual, the ñner-grained these events are, the more detailed and
thus more effective the handling of the events can be. One obvious possibility
is to use modules as events. This means that all cali patterns which correspond
to a module are handled simultaneously whenever the module is selected at
the global level. A more reñned possibility is to keep events at the cali pattern
level. This, together with sufficiently detailed information in the GDT will allow
incrementality at the cali pattern level rather than module level.

6.1 Parameters of the Framework

The framework has three parameters. The program unit corresponds to the pro-
gram unit to be analyzed. Note that the code may not be physically stored in
the tool's memory since it is already on external storage. However, the frame
work may maintain some information on the program unit, such as dependen-
cies among modules, strongly connected components, and any other information
which may be useful in order to guide analysis. In the ñgure the program unit is
represented, as an example, containing a program unit composed of four mod
ules. The second parameter is the entry policy, which determines the way in
which the GTQ and GAT should be initialized whenever analysis of a program
unit is started. Depending on how the success policy is deñned, entries for all
procedures exported in each of the modules in the program unit may be required
in GAT and GTQ or not.

Finally, the scheduling policy determines the order in which the entries in the
GTQ should be processed. The efficiency with which the ñxed-point is reached
can differ very much from some scheduling policies to others. Since the framework
presented in Figure 5 has just one analysis engine, processing a cali pattern in
a different module from that currently loaded has a relevant cost associated to
it, since this often requires context switching from the current module to a new
module. Thus, it is often a good idea to process all or many of the cali patterns
in GTQ which correspond to the module which is being analyzed in order to
minimize the number of times the analysis tool has to switch from one module
to another. In the rest of the paper we consider that events in GTQ are answer
patterns which would beneñt from (re-) analysis. The role of the scheduling policy
is to select a set of patterns from GTQ which must necessarily belong to the
same module m to be analyzed. Note that a scheduling policy based on modules
can always be obtained by simply processing at each analysis step all events in
GTQ which correspond to m.

6.2 How the Global Level Works

As already mentioned, analysis of a modular program starts by initializing
the global data structures as indicated by the entry policy. At each step, the
scheduling policy is used to determine the set Em of entries for module m
which are to be processed. They are removed from GTQ and copied into the
data structure Entries. The code of the module m is also copied to code. Then,
MAnalysis{m,Em,SP) = (LATm,LDTm, TATm) is computed. Then, the global
data structures are updated, as detailed in Section 6.3 below. As a result of this,
new events may be added to GTQ. Analysis terminates when there are no more
events to process in GTQ or when the scheduling strategy does not select any
further events.

Each entry in GTQ is of one of the following three types: over-approximation,
under-approximation, or invalid, according to the reason why they should be re-
analyzed. An entry P : CP i—> AP which is an over-approximation is marked
P : CP i-^+ AP. This indicates that the answer pattern AP is possibly an

over-approximation since it depends on a cali pattern whose answer pattern has
been determined to be an over-approximation. In other words, the accuracy of
P : CP i—> AP may be improved by re-analysis. Similarly, under-approximations
are marked P : CP i—>_ AP and they indicate that AP is probably an under-
approximation since it depends on a cali pattern whose success pattern has
increased. As a result, the cali pattern should be re-analyzed to guarantee cor-
rectness. Finally invalid entries are marked P : CP t-^1- AP. They indicate that
the relation between the current answer pattern AP and one resulting from re-
computing it for P : CP is unpredictable. This often indicates that the source
code of the module has changed in a way that the analysis results for some of
the exported procedures are just incompatible with previous ones. Handling this
kind of events is discussed in more detail in Section 6.4 below.

6.3 Updating the Global State

In Section 5 it has been presented how the local level subsystem, given a module
m, can compute the corresponding LATm, LDTm, and TATm. However, once
analysis of module m is done, the analysis results of module m have to be used in
order to update the global state prior to starting analysis of any other module.

We now briefly discuss how this updating is done. For each initial cali pattern
P : CP in Entries we compare the previous answer pattern AP with the newly
computed one AP'. If AP = AP' then this cali pattern has not been affected by
the latest analysis. However, it is also possible that the answer pattern "evolves"
in different analysis iterations. If we use SP+, the natural thing is that the new
answer pattern is more speciñc than the previous one, Le., AP' C AP. In such
case those cali patterns which depend on P : CP can also improve their success
pattern. We use the GDT to lócate all such patterns and we add them to the
GTQ with the + mark. Conversely, if we use SP~, the natural thing is that
AP C AP'. We then add events marked _ .

In a typical situation, and if modules do not change, all events in GTQ will
be approximations of the same sign. This depends on the success policy used.
If the success policy is of kind SP+ (resp. SP~) then the events which will be
added to GTQ will also be over-approximations (resp. under-approximations).
In turn, when they are processed they will introduce other over-approximations
(resp. under-approximations).

The TATm is also used to update the global state. All entries in TATm are
added to GAT and GTQ marked with the same sign as the success policy used.
Last, we also have to update the GDT. For this, we ñrst erase all entries for
any of the cali patterns which we have just analyzed, and which are thus stored
in entriesm. Then we add an entry of the form P : CP —> H : CP' for each
imported procedure H which is reachable with cali pattern CP' from an initial
cali pattern P : CP. Note that this can easily be determined using LDT.

6.4 Recovering from an Invalid State

If code of a module m has changed since it was last analyzed, it can be the
case that the global information available is invalid. This happens when in the
results of re-analysis of m any of the exported predicates has an answer pattern
which is incompatible with the previous results. In this case, all information
dependent on the new answer patterns might have become invalid, as discussed
in Section 6.2. The question is how to minimize the impact of such a situation.

The simplest solution is to (transitively) erase any information of other mod
ules which depends on the invalidated one. This solution may not be very ef-
ñcient, as it ignores all results of previous analyses of other modules even if
the changes performed in the module are minor, or only affect directly related
modules. Another alternative is to launch an automatic recovery process as soon
as invalid analysis results are detected (see [4]). This process has to reanalyze
the modules directly affected by the invalidated answer pattern(s). If the new
answer patterns coincide with the oíd ones then the changes do not affect this
module and the process terminates. Otherwise, it continúes transitively with the
directly related modules.

7 Using a Manual Scheduling Policy

Consider, for example, the relevant case of independent development of different
parts of the program, which can then even be performed in parallel by differ
ent teams. In this setting, it makes sense that the analyzer performs its job on
the current module without analyzing other modules in the program unit, i.e.,
it allows sepárate analysis. This will typically allow early detection of compile-
time errors in the current module without having to wait for the code of the
dependent modules to be fully developed. Moreover, in this setting, it is the user
(or users) who decide when and what to analyze. Thus, we refer to this as the
manual setting. Furthermore, we assume that in this setting analysis for a mod
ule m has to do its best with only the code for m plus the results of previous
analyses (if any) of the modules in depends(m). These assumptions have im-
portant implications. The setting allows the users of different modules to decide
when they should be processed. And thus, any module could be (re-)analyzed
at any point. As a result, strong requirements must hold for the whole approach
to be correct. In return, the results obtained may not be optimal (in terms of
error detection, degree of optimization, etc., depending on the particular tools)
w.r.t. those achievable using automatic scheduling.

So the question is, is there any combination of the three parameters of the
global analysis framework which allows handling the manual setting? The an
swer to this question is yes. Our earlier paper [4] essentially describes such an
instantiation of the analysis framework. In the terminology of the current paper,
the model in [4] corresponds to waiting until the user requests that a module m
in the program unit U be analyzed. The success policy is over-approximating.
This guarantees that in the absence of invalidated entries in the GTQ all events
will be marked + . This means that the analysis information available is correct,

though perhaps not as accurate as possible. Since the scheduling is manual, no
other analyses should be triggered until the user requires so. Finally, the entry
policy is simply to include in GTQ an event such as P : T i—>+ T per predicate
exported by any of the modules in U to be analyzed (it is called all entry policy).
The initial events are required to be so general to keep the overall correctness
of the analysis while allowing the users to choose the order of the modules to
be analyzed.7 The model in [4] has the very important feature of being guar-
anteed to always provide correct results without the need of reaching a global
ñxed-point.

8 Using an Automatic Scheduling Policy

In spite of the evident interest of the manual setting, there are situations in which
the user is interested in obtaining the most accurate analysis results possible. For
this, it may be required to analyze the modules in the program unit several times
in order to converge to a distributed global ñxed-point. We will refer to this as
the automatic setting, in which the user decides when to start global analysis
of a program unit. From then on it is the global analysis framework by means
of its scheduling policy who decides when and what to analyze. Note that the
manual and automatic settings roughly correspond to scenario 1 and scenario 2
of [19] respectively. Since we admit circular dependencies among modules, the
strategy has to be able to deal with such circularities correctly and efficiently
without entering infinite loops. The question now is what are the valúes for the
different parameters to our generic framework which should be used in order
to obtain satisfactory results? One major difference of the automatic setting
w.r.t. the manual setting is that in addition to over-approximations, now also
under-approximations can be used. This is because though under-approximations
do not guarantee correctness in general, when an inter-modular ñxed-point is
reached, analysis results are guaranteed to be correct. Below we consider the use
of SP+ and SP~ separately.

8.1 Using Over-Approximating Success Policies

If a success policy SP+ is used, we are in a situation similar to the one in Sec-
tion 7 in that independently of how many times each module has been analyzed,
if there have not been any code changes, the analysis results are guaranteed to
be correct. The main difference is that now the system keeps on automatically
requesting further analysis steps until a ñxed-point is reached.

Regarding the entry policy, an important observation is that in the automatic
mode, much as in the case of intra-modular analysis, inter-modular analysis
will eventually compute all cali patterns which are needed in order to obtain
information which is correct w.r.t. calis, Le., the set of computed cali patterns

7 In the case of the Ciao system it is possible to use entry declarations (see for exam-
ple [16]) in order to improve the set of initial cali patterns for analysis.

covers all possible calis which may occur at run-time for the class of initial calis
considered, i.e., those for the top-level of the program unit U. This will allow us
to use a different entry policy from that used in the manual mode: rather than
introducing events of the form P : T i—>+ T in the GTQ for exported predicates
in all modules in U, it suffices to introduce them for predicates exported by the
top-level of U (this entry policy is named top-level entry policy). This has several
important advantages: (1) It avoids analyzing all predicates for the most general
cali pattern, since this may end up introducing plenty of cali patterns which are
not used in our particular program unit U. (2) It will help to have a more guided
scheduling policy since there are no requests for processing a module until it is
certain that a cali pattern should be analyzed. (3) If múltiple specialization is
being performed based on the set of cali patterns for each procedure (possibly
proceeded by a minimization step for eliminating useless versions [18]), the fact
that a cali pattern with the most general cali pattern exists implies that a non-
optimized versión of the predicate must always exist. Another way out of this
problem is to eliminate useless cali patterns once an inter-modular ñxed-point
has been reached.

Since reaching a global ñxed-point can be a costly task, one interesting pos-
sibility can be the introduction of a time-out. The user can ask the system to
request (re-)analysis as needed towards improving the analysis information. How-
ever, if after performing n analysis steps the time-out is reached before analysis
n + 1 is ñnished, the global state corresponding to state n is guaranteed to be
correct. In this case, the entry policy used has to be to introduce most general
cali patterns for all exported predicates, either before starting analysis or when
a time-out is reached.

8.2 Using Under-Approximating Success Policies

Another alternative is to use SP~. As a result, the analysis results are not
guaranteed to be correct until an inter-modular ñxed-point is reached. Thus,
it may take a large amount of time to perform this global analysis. On the
other hand, once a ñxed-point is reached, the accuracy which will be obtained
is optimal, since it corresponds to the least analysis graph, which is exactly the
same which the flattening approach would have obtained.

Regarding the entry policy, the same discussion as above applies. The only
difference being that the GTQ should be initialized with events of the form
P : T ^ " 1 since now the framework computes under-approximations. Clearly,
_L is an under-approximation of any description.

Another important thing to note is that, since the ñnal results of automatic
analysis are optimal, they do not depend on the use of a particular success policy
SP[~ or another SP2~ • Of course, the efficiency using SP[~ can be very different
from that obtained using SP2~ •

8.3 Hybrid policy

In practice we may wish to use a manual scheduling policy with an over-approxi
mating success policy during program development, and then use an automatic
scheduling policy with an under-approximating success policy just before pro
gram reléase, so as to ensure that the analysis is as precise as possible, thus
allowing as much optimization as possible in the ñnal versión.

Fortunately, in such a situation we can often reuse much of the analysis in-
formation obtained using the over-approximating success policy. The reason is
that if the analysis with the over-approximating success policy has reached a
ñxed-point, the answers obtained for module m are as accurate as those ob
tained with an under-approximating success policy as long as there are no cyclic
dependencies between the modules in depends(m). Thus in the common case
that no modules are mutually dependent we can simply use the answer tables
from the manual scheduling policy and use an automatic scheduling policy with
an over-approximating success policy to obtain the ñxed-point. Even in the case
that some modules are mutually dependent we can use this technique to com
pute the answers for the modules which do not contain cyclic dependencies or
do not depend on modules that contain them (e.g., leaf-modules).

8.4 Computation of an Intermodular Fixed-Point

Determining the optimal order in which the different modules in the program
unit should be analyzed in order to get to a ñxed-point as efficiently as possible
is not trivial and it is the topic of ongoing work.

Finding good scheduling strategies for intra-modular analysis is a topic which
has received considerable attention and highly optimized algorithms exist which
converge to a ñxed-point quickly. Unfortunately, it is not possible to directly
transíate the same heuristics used in the intra-modular case to the inter-modular
case. In the inter-modular case we have to take into account the time required
to change from analysis of one module to another since this typically means
reading a new module from disk. Thus, requests to process cali patterns have
to be grouped by modules in order to reduce the number of times we change
context.

Taking the heuristics in [17,10] as a starting point we are investigating and
experimenting with different scheduling policies which take into account different
aspects of the structure of the program unit such as dependencies, strongly
connected components, etc. with promising results. It also remains to be explored
which of the approaches to success policy results in more efficiently reaching a
global ñxed-point and whether the heuristics to be applied in either case coincide
or are mostly different.

9 Some Practical Implementation Issues

In this section we discuss several issues not addressed in the previous sections
and which are very important in order to have practical implementations of

context-sensitive analysis systems. These issues are related to the persistence of
global information and the analysis of librarles.

9.1 Making Global Information Persistent

The two-level framework presented in Section 6 needs to keep information both at
the local and global level. One relevant question, due to its practical implications,
is where this global information actually resides. One possibility is to have the
global analysis tool running continuously as a kind of "compilation server" which
stores the global state in its program memory. In a manual setting, this global
tool would wait for the user(s) to place requests to analyze modules. When a
request is received, the corresponding module is analyzed for the appropriate cali
patterns and using the global information available at the time in the memory of
the global analyzer. After analysis terminates, the global information is updated
and remembered by the process for subsequent requests. If we are in an automatic
setting, the global tool itself requests the analysis of different modules until a
global ñxed-point (or a time-out) is reached.

This approach outlined above is not fully persistent in the sense that if the
computer crashes all information about the global state is lost and analysis
would have to start from scratch again. In order to implement the more general
kind of persistence discussed in Section 4, a way to save and restore the global
state of analysis is needed. This requires storing the valué of the three global-
level data-structures: GAT, GDT, and GTQ. A level of granularity which seems
appropriate in this context is clearly the module level. Le., the global state
of analysis is saved and restored between two consecutive steps of (module)
analysis, but not during the analysis of a given module, which, from the point
of view of the two-level framework, is an atomic operation.
The ability to save and restore the global state of analysis has several advantages:

1. The global tool does not need to be running continuously: it can save its state,
stop, restart when needed, and restore the global state. This is specially
interesting when using a manual scheduling policy, since two consecutive
analysis requests can be separated by large intervals.

2. Even if the automatic scheduling policy is used, any information about the
global state which is still valid can be directly used. This means that analysis
can be incremental in the sense that (global level) analysis information which
is known to be valid is reused.

9.2 Splitting Global Information

Consider the analysis of module b in the program unit U = {a, b, c, d, e, f,g, h}
depicted in Figure 6. In principie, the global state includes information regard-
ing exported predicates in any of the modules in U. As a result, if we can save
the global state to disk and restore it, this would involve storing and retrieving
information about all modules in U. However, analysis of b only requires retriev
ing the information for modules in related(m). The small boxes which appear on

the side of every module represent the portion of the global structures related to
each module. To analyze the module b, the information of the global tables that
we need is that of modules a, d and e, as indicated by the dashed curved line.

This is straightforward to do in practice by splitting the information in the
global data structures into several parts, each one associated to a module. This
allows easily identifying the pieces of global information which are needed in
order to process a given module.

This optimization of the handling of global information has several advan-
tages:

1. The time required to save and restore the information to disk is reduced
since the total amount of information transferred is smaller.

2. The use of the data structures during analysis can be more efficient since
search space is reduced.

3. The total amount of memory required in order to analyze a module can
be signiñcantly reduced: only the local data structures plus a possibly very
reduced part of the global data structures are actually required to analyze
the module.

One question which we have intentionally left open is where the persistent
information should reside. In fact, all the discussion above is independent on how
and where the global state is stored, as long as it is persistent. One possibility
is to use a datábase which stores the global state and information is grouped
by modules in order to minimize the amount of information which has to be
retrieved or updated for each analysis. Another, very common, possibility is to
store the global information associated to each module to disk, in the same way
as temporary information (such as relocatable code) is stored in many tradi-
tional compilers. In fact, the actual implementation of modular analysis in both
CiaoPP and HAL [14] systems is based on this idea: a module m has a m.reg
ñle associated to it which contains the part of the global data structures which
are associated to m.

9.3 Handling Libraries and Predefined Modules

Many compilers and program development systems include a large number of
predeñned modules and libraries which can be readily reused by programmers
-an obviously interesting feature since it greatly reduces the time required to de-
velop applications. From the point of view of analysis, these predeñned modules
and libraries differ from user programs in a number of ways:

1. They are designed with reusability in mind and thus they can be used by a
comparatively large number of user programs.

2. Sometimes the source code for libraries and predeñned modules may not be
available. One common reason for this is that they are implemented in a
lower-level language.

3. The total amount of code available as librarles can be extremely large. Thus,
reanalyzing the librarles over and over again for slightly different cali patterns
can be costly.

Given these characteristics, it makes sense to develop a specialized treatment
for librarles. We propose the following scheme. For each library module, the
analysis results for a sufficient set of cali patterns should be precomputed. This
set should cover all possible correct cali patterns for the library. In addition,
the answer pattern for those cali patterns have to be an over-approximation of
the actual answers, independently of whether a SP+ or SP~ success policy is
used for the programs which use such library. In addition, in order to provide
more accurate information, more particular cali patterns which are expected to
occur often in programs which use that library module can also be included.
This information is added to the GAT of the program units which use the
library. Thus, the success policy will be able to use this information directly
for obtaining answer patterns. The reason for requiring pre-computed answer
patterns for library modules to be over-approximations is that, much in the
same way as for predeñned procedures, even if an automatic scheduling policy is
used, library modules are (in principie) not analyzed for calling patterns other
than those which are pre-computed. Note that this is conceptually equivalent
to considering the interface information of library modules read-only, since any
program using them can read this information, but no additional cali patterns
will be analyzed. As a result, the global level framework will ignore new cali
patterns to library procedures that might be generated during the analysis of
user programs. More precisely, entries of the form P : CP i—> AP in TAT such
that P is a library predicate do not need to be added to the GTQ since they will
not be analyzed. In addition, no entries of the form P : CP —> H : CP' need be
added to GDT if H is a library predicate, since the answer pattern for library
predicates is never modiñed and thus those dependencies are useless.

Deciding which is the best set of cali patterns for which a library module
should be analyzed is a non-trivial problem. One possibility can be to extract
cali patterns from correct programs which use the library and study which are
the cali patterns most often used. Another possibility is to have the library
developer decide which are the cali patterns of interest.

In spite of the considerations above, it is sometimes the case that we are
interested in treating a library module using the general scheme, Le., effectively
considering the library information writable and allowing the analysis of new cali
patterns and the storage of the corresponding results. This can be interesting if
the source code of a library is available and the set of initial cali patterns for
which it has been analyzed is not very representative. Note that hopefully this
will happen often only when the library is relatively new. Once the code of the
library stabilizes and a good set of initial patterns is obtained, it will generally
be considered read-only. Allowing reanalysis of a library can also be useful when
we are interested in using the analysis results from such cali patterns to optimize
the code of the library for the particular cases that correspond to those calis.

Fig. 6. Using Distributed Scheduling and Local Data Structures

For this case it may be interesting to store the corresponding information locally
to the calling module, as opposed to inserting it into the library directories.

In summary, the implementation of the framework needs to treat librarles in
a special way and also allow applying the general scheme for some designated
library modules.

10 Discussion and Conclusions

Table 1 summarizes some characteristics of the different instantiations of the
generic framework presented in the paper, in terms of the design features dis-
cussed in Section 4. The corresponding entries for the flattening approach of
Section 3 -our baseline as usual- are also provided for comparison, listed in the
column labeled Flattening. The Manual column lists the characteristics of the
manual scheduling policy described in Section 7. The last two columns corre-
spond to the two instantiations of the automatic scheduling policy, which were
presented in Sections 8.1 and 8.2 respectively. Automatic+ (resp. Automatic-)
indicate that an over-approximating (resp. under-approximating) success policy
is used.

The ñrst three rows, i.e., Scheduling policy, Success policy, and Entry policy
correspond to the valúes of these parameters in each instantiation.

AU instances of the framework for modular analysis are module-aware, in
contrast to Flattening, which is not. Both instances described of the modular
framework proposed are incremental, in the sense that only a subset (instead of
every module) in the program unit needs to be re-analyzed, and they also both
achieve the goal of not needing to reanalyze all cali patterns every time a module
is considered for analysis.

Regarding correctness, both the Flattening and Automatic- approaches have
in common that correctness is only guaranteed when analysis comes to an end.
This is because the approximations used are under-approximations and thus the
results are only guaranteed to be correct when a (global) ñxed-point is reached.

However, in the Manual and Automatic+ approaches the information in the global
state is correct after any number of local analysis steps.

On the other hand, both the Flattening and Automatic- approaches are guar-
anteed to obtain the most accurate information possible, i.e., the least analysis
graph, when a ñxed-point is reached. In contrast, the Manual approach cannot
guarantee optimal accuracy for two reasons. The ñrst one is that there is no
guarantee that modules will be processed the number of times that is necessary
for an inter-modular ñxed-point to be reached. Second, even if such a ñxed-point
is reached, it may not be the least ñxed-point. This is because this approach uses
over-approximations of the analysis results which are improved ("narrowed") in
the different analysis iterations until a ñxed-point is reached. On the other hand,
if there are no circular dependencies among predicates in different modules, then
the ñxed-point obtained will be the least one, i.e., the most accurate.

Regarding efficiency in time we will consider two cases. The ñrst one is when
we have to perform analysis of the program unit from scratch. In this case,
Flattening can be highly optimized in order to converge quickly to a ñxed-point.
In contrast, in this situation the instances of the modular framework have the
disadvantage that Ioading and unloading modules during analysis introduces a
signiñcant overhead. As a result, in order to maintain the number of context
changes low, cali patterns may be solicited from imported modules which use
temporary information and which are not needed in the ñnal analysis graph.
These cali patterns which end up being useless are known as spurious versions.
This problem also occurs in Flattening, though to a much lesser degree if good
algorithms are used. Therefore, the modular approaches may end up performing
work which is speculative, and thus the total amount of work performed in the
automatic approaches to modular analysis is in principie an upper bound of that
needed in Flattening.

On the other hand, consider the second case in which a relatively large
amount of intra-modular analysis has already taken place for the modules to be
analyzed in our programming unit and that the global information is persistent.
In this case, the automatic approaches can update their global data structures
using the precomputed information, rather than starting from scratch as is done
in Flattening. In such a case the automatic approaches may perform much less
work than Flattening. It is to be expected that once module m becomes stable,
i.e., it is fully developed, it will quickly be analyzed for a relatively large set
of calling patterns. In such a case it is likely that it will be possible to analyze
any other module m! which uses m by simply reusing the existing analysis re
sults for m. This is specially true in the case of library modules, as discussed in
Section 9.3.

Regarding the efficiency in terms of memory, it is to be expected that the
instances of the modular framework will outperform the non-modular, flatten
ing approach. This was in fact already observed in the case of [4]. Indeed, one
important practical difficulty that appears during the (monolithic) analysis of
large programs is that the amount of information which is kept in memory is
very large and the storage needed can become too large to ñt in memory. The

Table 1. Comparison of Approaches to Modular Analysis

Scheduling policy
Success policy
Entry policy
Module-aware
No Rean. of all CPs
Correct
Accurate
Efficient in time
Efficient in memory
Termination

Flattening
automatic

sp-
top-level

no
no

at fixed-point
yes
yes
no

ñnite ase. chains

Manual
manual

SP+
all
yes
n /a
yes
no
n/a
yes

ñnite ase. chains

Automatic+

automatic
SP+

top-level
yes
yes
yes

no circularities
no
yes

ñnite chains

Automatic
automatic

sp-
top-level

yes
yes

at fixed-point
yes
no
yes

finite ase. chains

modular framework proposed needs less memory because: a) at each point in
time, only one module requires to be loaded in the code área, and b) the local
answer table only needs to hold enfries for the module being analyzed, and not
for other modules. Also, in general, the total amount of memory required to
store the global data structures is not very high when compared to the memory
required locally for the different modules. In addition, not all the global data
structures are required when analyzing a module m, but only that associated
with the modules in related(m).

Finally, regarding termination, except for Flattening, in which only one level
of termination is required, the three other cases require two levéis of termination:
at the intra-modular and at the inter-modular level. In Flattening, since analysis
results increase monotonically until a ñxed-point is reached, termination is often
guaranteed by considering description domains which do not contain infinite as-
cending chains: no matter what the current description is, top (T), which is triv-
ially guaranteed to be a fixed-point, is only a finite number of steps away. Exactly
the same condition is required for guaranteeing termination of Automatic-. The
manual approach only requires guaranteeing intra-modular termination since the
number of cali patterns analyzed is finite. However, in the case Automatic+, finite
ascending chains are required for ensuring local termination and finite descend-
ing chains are required for ensuring global termination. As a result, termination
requires domains with finite chains, or appropriate widening operators.

In summary, the proposed two-level generic framework for analysis and its
instantiations meet a good subset of our stated objectives. We hope the dis-
cussion and the concrete proposal presented in this paper will provide a better
understanding of the handling of context-sensitive program analysis on modular
programs and contribute to the widespread use of such context-sensitive analy
sis techniques for modular programs in practical systems. An implementation of
the framework, as a generalization of the pre-existing CiaoPP modular analysis
components, is currently being completed. In this context, we are experiment-
ing with different scheduling policies for the global level, for concrete, practical
analysis situations.

References

1. F. Besson and T. Jensen. Modular class analysis with datalog. In lOth International
Symposium on Static Analysis, SAS 2003, number 2694 in LNCS. Springer, 2003.

2. A. Bossi, M. Gabbrieli, G. Levi, and M.C. Meo. A compositional semantics for
logic programs. Theoretical Computer Science, 122(1,2):3-47, 1994.

3. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

4. F. Bueno, M. García de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. A Model for ínter-module Analysis and Optimizing Compilation. In
Logic-based Program Synthesis and Transformation, number 2042 in LNCS, pages
86-102. Springer-Verlag, March 2001.

5. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, 1994.

6. M. Codish, S.K. Debray, and R. Giacobazzi. Compositional analysis of modular
logic programs. In Proc. POPL'93, 1993.

7. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of Programming Languages, pages 238-252,
1977.

8. María J. García de la Banda, Bart Demoen, Kim Marriott, and Peter J. Stuckey.
To the Gates of HAL: A HAL Tutorial. In International Symposium on Functional
and Logic Programming, pages 47-66, 2002.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In lOth
International Static Analysis Symposium (SAS'03), number 2694 in LNCS, pages
127-152. Springer-Verlag, June 2003.

10. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems, 22(2):187-223, March 2000.

11. A. Kelly, A. Macdonald, K. Marriott, H. S0ndergaard, and P.J. Stuckey. Optimiz
ing compilation for CLP(7?.). ACM Transactions on Programming Languages and
Systems, 20(6):1223-1250, 1998.

12. K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algo
rithm for Top-down Abstract Interpretation of Logic Programs. Technical Report
ACT-DC-153-90, Microelectronics and Computer Technology Corporation (MCC),
Austin, TX 78759, April 1990.

13. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

14. Nicholas Nethercote. The Analysis System of HAL. Master's thesis, Monash Uni-
versity, 2002.

15. Christian W. Probst. Modular Control Flow Analysis for Librarles. In Static
Analysis Symposium, SAS'02, volume 2477 of LNCS, pages 165-179. Springer-
Verlag, 2002.

16. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in
LNCS, pages 23-61. Springer-Verlag, September 2000.

17. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal
ysis of Logic Programs. In International Static Analysis Symposium, number 1145
in LNCS, pages 270-284. Springer-Verlag, September 1996.

18. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Applica
tion to Program Parallelization. J. of Logic Programming. Special Issue on Synthe-
sis, Transformation and Analysis of Logic Programs, 41(2&3):279-316, November
1999.

19. G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. In Special Issue on Optimization and Implemen-
tation of Declarative Programming Languages, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier - North Holland, March 2000.

20. G. Puebla and M. Hermenegildo. Abstract Specialization and its Applications. In
ACM Partial Evaluation and Semantics based Program Manipulation (PEPM'03),
pages 29-43. ACM Press, June 2003. Invited talk.

21. A. Rountev, B.G. Ryder, and W. Landi. Data-flow analysis of program fragments.
In ESEC/FSE'99, volume 1687 of LNCS, pages 235-252. Springer-Verlag, 1999.

22. Y. M. Tang and P. Jouvelot. Sepárate abstract interpretation for control-flow
analysis. In Theoretical Aspects of Computer Software (TACS '94), number 789 in
LNCS. Springer, 1994.

23. W. Vanhoof and M. Bruynooghe. Towards modular binding-time analysis for first-
order mercury. In Special Issue on Optimization and Implementation of Declarative
Programming Languages, volume 30 of Electronic Notes in Theoretical Computer
Science. Elsevier - North Holland, March 2000.

