2,590 research outputs found

    Quantum Digital Signature based on Quantum One-way Functions

    Get PDF
    A quantum digital signature protocol based on quantum mechanics is proposed in this paper. The security of the protocol relies on the existence of quantum one-way functions by quantum information theorem. This protocol involves a so-called arbitrator who validates and authenticates the signed message. In this protocol, we use privacy key algorithm to ensure the security of quantum information on channel and use quantum public keys to sign message. To guarantee the authenticity of the message, a family of quantum stabilizer codes are employed. Our protocol presents a novel method to construct ultimately secure digital system in future secure communication.Comment: 9 pages, 1 tabl

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table

    From Quantum Cheating to Quantum Security

    Get PDF
    For thousands of years, code-makers and code-breakers have been competing for supremacy. Their arsenals may soon include a powerful new weapon: quantum mechanics. We give an overview of quantum cryptology as of November 2000.Comment: 14 pages, 4 figures. Originally appeared in Physics Today: . This article may be downloaded for personal use only. Any other use requires prior permission of both the author and the American Institute of Physic

    Authentication of Quantum Messages

    Full text link
    Authentication is a well-studied area of classical cryptography: a sender S and a receiver R sharing a classical private key want to exchange a classical message with the guarantee that the message has not been modified by any third party with control of the communication line. In this paper we define and investigate the authentication of messages composed of quantum states. Assuming S and R have access to an insecure quantum channel and share a private, classical random key, we provide a non-interactive scheme that enables S both to encrypt and to authenticate (with unconditional security) an m qubit message by encoding it into m+s qubits, where the failure probability decreases exponentially in the security parameter s. The classical private key is 2m+O(s) bits. To achieve this, we give a highly efficient protocol for testing the purity of shared EPR pairs. We also show that any scheme to authenticate quantum messages must also encrypt them. (In contrast, one can authenticate a classical message while leaving it publicly readable.) This has two important consequences: On one hand, it allows us to give a lower bound of 2m key bits for authenticating m qubits, which makes our protocol asymptotically optimal. On the other hand, we use it to show that digitally signing quantum states is impossible, even with only computational security.Comment: 22 pages, LaTeX, uses amssymb, latexsym, time

    Quantum asymmetric cryptography with symmetric keys

    Full text link
    Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
    • …
    corecore