19 research outputs found

    Group key exchange protocols withstanding ephemeral-key reveals

    Get PDF
    When a group key exchange protocol is executed, the session key is typically extracted from two types of secrets; long-term keys (for authentication) and freshly generated (often random) values. The leakage of this latter so-called ephemeral keys has been extensively analyzed in the 2-party case, yet very few works are concerned with it in the group setting. We provide a generic {group key exchange} construction that is strongly secure, meaning that the attacker is allowed to learn both long-term and ephemeral keys (but not both from the same participant, as this would trivially disclose the session key). Our design can be seen as a compiler, in the sense that it builds on a 2-party key exchange protocol which is strongly secure and transforms it into a strongly secure group key exchange protocol by adding only one extra round of communication. When applied to an existing 2-party protocol from Bergsma et al., the result is a 2-round group key exchange protocol which is strongly secure in the standard model, thus yielding the first construction with this property

    There Is Always an Exception: Controlling Partial Information Leakage in Secure Computation

    Get PDF
    Private Function Evaluation (PFE) enables two parties to jointly execute a computation such that one of them provides the input while the other chooses the function to compute. According to the traditional security requirements, a PFE protocol should leak no more information, neither about the function nor the input, than what is revealed by the output of the computation. Existing PFE protocols inherently restrict the scope of computable functions to a certain function class with given output size, thus ruling out the direct evaluation of such problematic functions as the identity map, which would entirely undermine the input privacy requirement. We observe that when not only the input xx is confidential but certain partial information g(x)g(x) of it as well, standard PFE fails to provide meaningful input privacy if gg and the function ff to be computed fall into the same function class. Our work investigates the question whether it is possible to achieve a reasonable level of input and function privacy simultaneously even in the above cases. We propose the notion of Controlled PFE (CPFE) with different flavours of security and answer the question affirmatively by showing simple, generic realizations of the new notions. Our main construction, based on functional encryption (FE), also enjoys strong reusability properties enabling, e.g. fast computation of the same function on different inputs. To demonstrate the applicability of our approach, we show a concrete instantiation of the FE-based protocol for inner product computation that enables secure statistical analysis (and more) under the standard Decisional Diffie--Hellman assumption

    Are you The One to Share? Secret Transfer with Access Structure

    Get PDF
    Sharing information to others is common nowadays, but the question is with whom to share. To address this problem, we propose the notion of secret transfer with access structure (STAS). STAS is a two-party computation protocol that enables the server to transfer a secret to a client who satisfies the prescribed access structure. In this paper, we focus on the case of STAS for threshold access structure, i.e. threshold secret transfer (TST). We also discuss how to replace it with linear secret sharing to make the access structure more expressive. Our proposed TST scheme enables a number of applications including a simple construction of oblivious transfer with threshold access control, and (a variant of) threshold private set intersection (t-PSI), which are the first of their kinds in the literature to the best of our knowledge. Moreover, we show that TST is useful a number of applications such as privacy-preserving matchmaking with interesting features. The underlying primitive of STAS is a variant of oblivious transfer (OT) which we call OT for sparse array. We provide two constructions which are inspired from state-of-the-art PSI techniques including oblivious polynomial evaluation and garbled Bloom filter (GBF). We implemented the more efficient construction and provide its performance evaluation

    Distribution and Polynomial Interpolation of the Dodis-Yampolskiy Pseudo-Random Function

    Get PDF
    International audienceWe give some theoretical support to the security of the cryptographic pseudo-random function proposed by Dodis and Yampolskiy in 2005. We study the distribution of the function values over general finite fields and over elliptic curves defined over prime finite fields. We also prove lower bounds on the degree of polynomials interpolating the values of these functions in these two settings

    Verifiable Random Functions from Non-Interactive Witness-Indistinguishable Proofs

    Get PDF
    {\em Verifiable random functions} (VRFs) are pseudorandom functions where the owner of the seed, in addition to computing the function\u27s value yy at any point xx, can also generate a non-interactive proof π\pi that yy is correct, without compromising pseudorandomness at other points. Being a natural primitive with a wide range of applications, considerable efforts have been directed towards the construction of such VRFs. While these efforts have resulted in a variety of algebraic constructions (from bilinear maps or the RSA problem), the relation between VRFs and other general primitives is still not well understood. We present new constructions of VRFs from general primitives, the main one being {\em non-interactive witness-indistinguishable proofs} (NIWIs). This includes: \begin{itemize} \item A selectively-secure VRF assuming NIWIs and non-interactive commitments. As usual, the VRF can be made adaptively-secure assuming subexponential hardness of the underlying primitives. \item An adaptively-secure VRF assuming (polynomially-hard) NIWIs, non-interactive commitments, and {\em (single-key) constrained pseudorandom functions} for a restricted class of constraints. \end{itemize} The above primitives can be instantiated under various standard assumptions, which yields corresponding VRF instantiations, under different assumptions than were known so far. One notable example is a non-uniform construction of VRFs from subexponentially-hard trapdoor permutations, or more generally, from {\em verifiable pseudorandom generators} (the construction can be made uniform under a standard derandomization assumption). This partially answers an open question by Dwork and Naor (FOCS \u2700). The construction and its analysis are quite simple. Both draw from ideas commonly used in the context of {\em indistinguishability obfuscation}

    Fooling primality tests on smartcards

    Get PDF
    We analyse whether the smartcards of the JavaCard platform correctly validate primality of domain parameters. The work is inspired by the paper Prime and prejudice: primality testing under adversarial conditions, where the authors analysed many open-source libraries and constructed pseudoprimes fooling the primality testing functions. However, in the case of smartcards, often there is no way to invoke the primality test directly, so we trigger it by replacing (EC)DSA and (EC)DH prime domain parameters by adversarial composites. Such a replacement results in vulnerability to Pohlig-Hellman style attacks, leading to private key recovery. Out of nine smartcards (produced by five major manufacturers) we tested, all but one have no primality test in parameter validation. As the JavaCard platform provides no public primality testing API, the problem cannot be fixed by an extra parameter check, %an additional check before the parameters are passed to existing (EC)DSA and (EC)DH functions, making it difficult to mitigate in already deployed smartcards

    A Multireceiver Certificateless Signcryption (MCLS) Scheme

    Get PDF
    User authentication and message confidentiality are the basic security requirements of high-end applications such as multicast communication and distributed systems. Several efficient signature-then-encrypt cryptographic schemes have been proposed to offer these security requirements with lower computational cost and communication overhead. However, signature-then-encryption techniques take more computation time than signcryption techniques. Signcryption accomplishes both digital signature and public key encryption functions in a single logical step and at a much lower cost than ``signature followed by encryption.\u27\u27 Several signcryption schemes based on bilinear pairing operations have been proposed. Similarly, anonymous multi-receiver encryption has recently risen in prominence in multicast communication and distributed settings, where the same messages are sent to several receivers but the identity of each receiver should remain private. Anonymous multi-receiver encryption allows a receiver to obtain the plaintext by decrypting the ciphertext using their own private key, while their identity is kept secret to anyone, including other receivers. Among the Certificateless Multi-receiver Encryption (CLMRE) schemes that have been introduced, Hung et al. proposed an efficient Anonymous Multireceiver Certificateless Encryption (AMCLE) scheme ensuring confidentiality and anonymity based on bilinear pairings and is secure against IND-CCA and ANON-CCA. In this paper, we substantially extend Hung et al.’s multireceiver certificateless encryption scheme to a Multireceiver Certificateless Signcryption (MCLS) scheme that provides confidentiality along with authentication. We show that, as compared to Hung et al.’s encryption scheme, our signcryption scheme requires only three additional multiplication operations for signcryption and unsigncryption phases. Whereas, the signcryption cost is linear with the number of designated receivers while the unsigncryption cost remains constant for each designated receiver. We compare the results with other existing single receiver and multireceiver signcryption schemes in terms of number of operations, exemption of key escrow problem, and public key settings. The scheme proposed in this paper is more efficient for single and multireceiver signcryption schemes while providing exemption from the key escrow problem, and working in certificateless public key settings

    The Role of the Adversary Model in Applied Security Research

    Get PDF
    Adversary models have been integral to the design of provably-secure cryptographic schemes or protocols. However, their use in other computer science research disciplines is relatively limited, particularly in the case of applied security research (e.g., mobile app and vulnerability studies). In this study, we conduct a survey of prominent adversary models used in the seminal field of cryptography, and more recent mobile and Internet of Things (IoT) research. Motivated by the findings from the cryptography survey, we propose a classification scheme for common app-based adversaries used in mobile security research, and classify key papers using the proposed scheme. Finally, we discuss recent work involving adversary models in the contemporary research field of IoT. We contribute recommendations to aid researchers working in applied (IoT) security based upon our findings from the mobile and cryptography literature. The key recommendation is for authors to clearly define adversary goals, assumptions and capabilities

    Password-based group key exchange in a constant number of rounds

    Get PDF
    Abstract. With the development of grids, distributed applications are spread across multiple computing resources and require efficient security mechanisms among the processes. Although protocols for authenticated group Diffie-Hellman key exchange protocols seem to be the natural mechanisms for supporting these applications, current solutions are either limited by the use of public key infrastructures or by their scalability, requiring a number of rounds linear in the number of group members. To overcome these shortcomings, we propose in this paper the first provably-secure password-based constant-round group key exchange protocol. It is based on the protocol of Burmester and Desmedt and is provably-secure in the random-oracle and ideal-cipher models, under the Decisional Diffie-Hellman assumption. The new protocol is very efficient and fully scalable since it only requires four rounds of communication and four multi-exponentiations per user. Moreover, the new protocol avoids intricate authentication infrastructures by relying on passwords for authentication.
    corecore