289 research outputs found

    Pseudorandomness for Approximate Counting and Sampling

    Get PDF
    We study computational procedures that use both randomness and nondeterminism. The goal of this paper is to derandomize such procedures under the weakest possible assumptions. Our main technical contribution allows one to “boost” a given hardness assumption: We show that if there is a problem in EXP that cannot be computed by poly-size nondeterministic circuits then there is one which cannot be computed by poly-size circuits that make non-adaptive NP oracle queries. This in particular shows that the various assumptions used over the last few years by several authors to derandomize Arthur-Merlin games (i.e., show AM = NP) are in fact all equivalent. We also define two new primitives that we regard as the natural pseudorandom objects associated with approximate counting and sampling of NP-witnesses. We use the “boosting” theorem and hashing techniques to construct these primitives using an assumption that is no stronger than that used to derandomize AM. We observe that Cai's proof that S_2^P ⊆ PP⊆(NP) and the learning algorithm of Bshouty et al. can be seen as reductions to sampling that are not probabilistic. As a consequence they can be derandomized under an assumption which is weaker than the assumption that was previously known to suffice

    A Unified View of Graph Regularity via Matrix Decompositions

    Full text link
    We prove algorithmic weak and \Szemeredi{} regularity lemmas for several classes of sparse graphs in the literature, for which only weak regularity lemmas were previously known. These include core-dense graphs, low threshold rank graphs, and (a version of) LpL^p upper regular graphs. More precisely, we define \emph{cut pseudorandom graphs}, we prove our regularity lemmas for these graphs, and then we show that cut pseudorandomness captures all of the above graph classes as special cases. The core of our approach is an abstracted matrix decomposition, roughly following Frieze and Kannan [Combinatorica '99] and \Lovasz{} and Szegedy [Geom.\ Func.\ Anal.\ '07], which can be computed by a simple algorithm by Charikar [AAC0 '00]. This gives rise to the class of cut pseudorandom graphs, and using work of Oveis Gharan and Trevisan [TOC '15], it also implies new PTASes for MAX-CUT, MAX-BISECTION, MIN-BISECTION for a significantly expanded class of input graphs. (It is NP Hard to get PTASes for these graphs in general.

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials

    DNF Sparsification and a Faster Deterministic Counting Algorithm

    Full text link
    Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ϵ\epsilon-approximated by a width ww DNF with at most (wlog(1/ϵ))O(w)(w\log(1/\epsilon))^{O(w)} terms. We combine our sparsification result with the work of Luby and Velikovic to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic nO~(loglog(n))n^{\tilde{O}(\log \log(n))} time algorithm that computes an additive ϵ\epsilon approximation to the fraction of satisfying assignments of f for \epsilon = 1/\poly(\log n). The previous best result due to Luby and Velickovic from nearly two decades ago had a run-time of nexp(O(loglogn))n^{\exp(O(\sqrt{\log \log n}))}.Comment: To appear in the IEEE Conference on Computational Complexity, 201

    Better Pseudorandom Generators from Milder Pseudorandom Restrictions

    Full text link
    We present an iterative approach to constructing pseudorandom generators, based on the repeated application of mild pseudorandom restrictions. We use this template to construct pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set generator for width-3 branching programs, all of which achieve near-optimal seed-length even in the low-error regime: We get seed-length O(log (n/epsilon)) for error epsilon. Previously, only constructions with seed-length O(\log^{3/2} n) or O(\log^2 n) were known for these classes with polynomially small error. The (pseudo)random restrictions we use are milder than those typically used for proving circuit lower bounds in that we only set a constant fraction of the bits at a time. While such restrictions do not simplify the functions drastically, we show that they can be derandomized using small-bias spaces.Comment: To appear in FOCS 201
    corecore