11,315 research outputs found

    The Grow-Shrink strategy for learning Markov network structures constrained by context-specific independences

    Full text link
    Markov networks are models for compactly representing complex probability distributions. They are composed by a structure and a set of numerical weights. The structure qualitatively describes independences in the distribution, which can be exploited to factorize the distribution into a set of compact functions. A key application for learning structures from data is to automatically discover knowledge. In practice, structure learning algorithms focused on "knowledge discovery" present a limitation: they use a coarse-grained representation of the structure. As a result, this representation cannot describe context-specific independences. Very recently, an algorithm called CSPC was designed to overcome this limitation, but it has a high computational complexity. This work tries to mitigate this downside presenting CSGS, an algorithm that uses the Grow-Shrink strategy for reducing unnecessary computations. On an empirical evaluation, the structures learned by CSGS achieve competitive accuracies and lower computational complexity with respect to those obtained by CSPC.Comment: 12 pages, and 8 figures. This works was presented in IBERAMIA 201

    A Bootstrap Method for Identifying and Evaluating a Structural Vector Autoregression

    Get PDF
    Graph-theoretic methods of causal search based in the ideas of Pearl (2000), Spirtes, Glymour, and Scheines (2000), and others have been applied by a number of researchers to economic data, particularly by Swanson and Granger (1997) to the problem of finding a data-based contemporaneous causal order for the structural autoregression (SVAR), rather than, as is typically done, assuming a weakly justified Choleski order. Demiralp and Hoover (2003) provided Monte Carlo evidence that such methods were effective, provided that signal strengths were sufficiently high. Unfortunately, in applications to actual data, such Monte Carlo simulations are of limited value, since the causal structure of the true data-generating process is necessarily unknown. In this paper, we present a bootstrap procedure that can be applied to actual data (i.e., without knowledge of the true causal structure). We show with an applied example and a simulation study that the procedure is an effective tool for assessing our confidence in causal orders identified by graph-theoretic search procedures.vector autoregression (VAR), structural vector autoregression (SVAR),causality, causal order, Choleski order, causal search algorithms, graph-theoretic methods

    Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data

    Full text link
    We consider learning, from strictly behavioral data, the structure and parameters of linear influence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most influential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games.Comment: Journal of Machine Learning Research. (accepted, pending publication.) Last conference version: submitted March 30, 2012 to UAI 2012. First conference version: entitled, Learning Influence Games, initially submitted on June 1, 2010 to NIPS 201
    • …
    corecore