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Abstract 
 

of  
 

A Bootstrap Method for Identifying and Evaluating a  
Structural Vector Autoregression 

 
Graph-theoretic methods of causal search based in the ideas of Pearl (2000), Spirtes, 
Glymour, and Scheines (2000), and others have been applied by a number of researchers 
to economic data, particularly by Swanson and Granger (1997) to the problem of finding 
a data-based contemporaneous causal order for the structural autoregression (SVAR), 
rather than, as is typically done, assuming a weakly justified Choleski order.  Demiralp 
and Hoover (2003) provided Monte Carlo evidence that such methods were effective, 
provided that signal strengths were sufficiently high.  Unfortunately, in applications to 
actual data, such Monte Carlo simulations are of limited value, since the causal structure 
of the true data-generating process is necessarily unknown.  In this paper, we present a 
bootstrap procedure that can be applied to actual data (i.e., without knowledge of the true 
causal structure).  We show with an applied example and a simulation study that the 
procedure is an effective tool for assessing our confidence in causal orders identified by 
graph-theoretic search procedures. 
 
 
Keywords:  vector autoregression (VAR), structural vector autoregression (SVAR), 
causality, causal order, Choleski order, causal search algorithms, graph-theoretic methods 
 
JEL Codes:  C30, C32, C51 
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A Bootstrap Method for Identifying and Evaluating a  
Structural Vector Autoregression 

 
1. Identification of the SVAR 
The structural vector autoregression (SVAR) has become a workhorse of empirical 

macroeconomics.  The main hurdle to using the SVAR is to identify the system so that 

unique random shocks can be associated with particular variables.  While other 

identification schemes are available (e.g., Blanchard and Quah (1989) identify the SVAR 

from assumptions about long-run properties), the most common scheme – and the only 

one that we address here – achieves identification through imposing zero restrictions on 

the matrix of contemporaneous correlations among the variables.  It is widely believed 

that identification depends on a priori assumptions.  On the contrary, starting with 

Swanson and Granger (1997), a number of authors have demonstrated how graph-

theoretic techniques can, in some cases, use the data themselves to identify the SVAR.  

These methods exploit patterns of conditional independence in the data.  In cases in 

which unique identification is not possible, they may nonetheless reduce the class of 

admissible identifying assumptions considerably.1  Demiralp and Hoover (2003) provide 

Monte Carlo evidence that, provided signal-to-noise ratios are high enough, these graph-

theoretic methods can recover effectively the true contemporaneous structure of SVARs.  

Monte Carlo results are too often specific to particular simulations and do not necessarily 

provide generic guidance.  To remedy this problem, we develop a bootstrap method that 

                                                 
1 Graph-theoretic methods are relatively new in economics, although increasingly used in other fields from 
sociology and psychology to medicine and biology.  Hoover (2001, ch. 7) provides a critical description 
(see also Hoover 2003, 2005).  LeRoy (2002) has recently discussed them in a review of Pearl (2000).  
There have been relatively few applications of graph-theoretic search algorithms to economic data.  Some 
examples include Sheffrin and Triest (1998), Akleman, Bessler, and Burton (1999), Bessler and Loper 
(2001), Yang and Bessler (2004), Haigh, Nomikos, and Bessler (2004).  Swanson and Granger (1997) and 
Demiralp (2000, ch. 4), Bessler and Lee (2002), Yang and Bessler (2003), Haigh, Nomikos, and Bessler 
(2004), Moneta (2003), and Awokuse (2005) are particularly concerned with the causal order of the VAR.   
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allows one to assess the reliability of a data-based identification scheme for arbitrary 

structures.  We show that this technique allows us, in cases in which we do not know the 

true underlying structure, to present simulation evidence that closely mimics Monte Carlo 

simulations for which we know the underlying structure ex hypothesi.  It therefore allows 

us to give reasonable assessments of the reliability of data-based, graph-theoretic 

identifications of SVARs. 

 The SVAR can be written as: 

 

(1)     ttt L EYAYA += −10 )( , 

 

where Yt is an N × 1 vector of contemporaneous variables, A0 is an N × N matrix with 

ones on the main diagonal and possibly non-zero off-diagonal elements; A(L) is a 

polynomial in the lag operator, L; and Et is an N × 1 vector of error terms with E = [Et],  

t = 1, 2, . . . , T and the covariance matrix Σ = E(EE´) diagonal.  The individual error 

terms (shocks) can be assigned unequivocally to particular equations because Σ is 

diagonal.  The matrix A0 defines the causal interrelationships among the 

contemporaneous variables.   

 Premultiplying equation (1) by 1
0

−A  yields the reduced-form or vector 

autoregression (VAR): 

 

(2)   ttttt LL UYBEAYAAY +=+= −
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with U = [Ut], t = 1, 2, . . . , T.  While equation (2) is easily estimated, the covariance 

matrix, Λ = E(UU′) in general will not be diagonal, so that it will be impossible to 

evaluate the effects of shocks to particular variables.  The identification problem reduces 

to this:  if we know A0, then it is easy to recover equation (1) from our estimates of (2); 

but how do we know A0? 

 Identification schemes typically start with the property that Σ, the covariance 

matrix of Et, is diagonal.  True identification would permit us to transform equation (2) 

into (1) and recover the diagonal Σ.  There are a large number of N × N matrices, Pi such 

that the covariance matrix ))'(( 11 UPUPΩ −−= iiE  is diagonal.  Let P = {Pi} be the set of 

all such orthogonalizing transformations.  Each element of P can be thought of as a 

potential candidate for A0.  Most commonly economists have based their choices of Pi on 

highly informal arguments appealing to general plausibility or weak theoretical 

considerations.  Typically, although not uniformly (see, for instance, Bernanke and 

Mihov 1998), they have restricted themselves to just-identified, lower-triangular 

matrices.  These are based on the Choleski decompositions of the covariance matrix of U.  

There are, in general, n! such matrices, each corresponding to one Wold- or recursive 

causal ordering of the variables in Y.   

 We too restrict ourselves to recursive orderings, but widen the class of possible 

matrices to include the over-identified – that is, to matrices that may have zeroes among 

the off-diagonal elements of Pi.  Graph-theoretic search algorithms work according to the 

following general plan:  the true A0 induces a set of conditional independence relations 

among the elements of Ut.  The algorithm thoroughly tests for conditional independence 
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relations among the estimated tÛ .  It then selects the class of Pi – perhaps unique – that 

is consistent with those independence relations. 

 The Monte Carlo simulations of Demiralp and Hoover (2003) generate data from 

a variety of known specifications of SVARs like equation (1) and then address the 

question of how successfully A0 can be recovered from estimates of VARs like equation 

(2).  The problem for empirical analysts is to evaluate the reliability of such 

identifications when A0 and, indeed, the entire specification of the SVAR is unknown.  

We employ a bootstrap strategy.  Starting with the original data, we estimate the VAR 

(equation (2)) and retain the residuals ]ˆ[ˆ
tUU = , t = 1, 2, . . . , T.  In order to maintain the 

contemporaneous correlations among the variables, we resample the residuals by columns 

from Û .  The resampled residuals are used in conjunction with the coefficient estimates 

of equation (2) to generate simulated data.  A large number of simulated data sets are 

created.  For each one, we run the search algorithm, record the results, and compute 

summary statistics.  

 Graph-theoretic, causal search algorithms are increasingly used in biological 

sciences, physical sciences, and social sciences, other than economics.  And while there 

are by now a number of applications within economics, the ideas behind graph-theoretic 

search algorithms are not well known among economists.  Consequently, we begin with a 

review of the basic ideas behind the algorithms.  Both the search algorithm and the 

bootstrap procedure that we propose to evaluate our confidence in the outcome of the 

search are best understood in a concrete example.  We, therefore, illustrate both with the 

same data set used in Swanson and Granger (1997).  The central question of this study is, 
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how reliable is this bootstrap procedure?  We conclude with a simulation study that 

addresses that question. 

 

2. The Causal Search Algorithm 
To keep things simple, assume that the variables are a cross-section with an interesting 

causal structure, but no time-series structure.  The most fundamental notion is that 

causally related variables are connected by edges.  On the one hand, if the direction of 

causal influence is ambiguous the edge is shown as a line or undirected edge.  On the 

other hand, if it is determinate, then an arrow head indicates the causal direction, and the 

edge is referred to as directed.  Sprites, Glymour, Scheines (2000) and Pearl (2000) show 

how the mathematics of graph theory relates a graphical representation of causal relations 

to implications for the probability distributions of the variables. 

 Suppose that A → B → C (that is, A causes B causes C).  A and C would be 

probabilistically dependent; but, conditional on B, they would be independent.2  Similarly 

for A ← B ← C.  In each case, B is said to screen A from C.  Suppose that A ← B → C.  

Then, once again A and C would be dependent; but, conditional on B, they would be 

independent.  B is said to be the common cause of A and C.  Now suppose that A and B 

are independent conditional on sets of variables that exclude C and its descendants (i.e., 

variables that have C as a direct or indirect cause, and none of the variables that cause A 

or B directly causes C.  Then, if A, B, and C are related as A → C ← B, then, conditional 

on C, A and B are dependent.  C is called an unshielded collider on the path ACB.  (A 

shielded collider would have a direct edge between A and B and would, therefore, be 

dependent whether or not one conditioned on C.) 
                                                 
2 This and the next five paragraphs are based closely on Hoover (2005), pp. 71-74.  
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 Causal search algorithms use a statistical measure of independence, commonly a 

measure of conditional correlation, to check systematically the patterns of conditional 

independence and dependence and to work backwards to the class of admissible causal 

structures.3  We employ the SGS algorithm of Spirtes et al. (2000, pp. 82-83).  The SGS 

algorithm is a close relative of the PC algorithm (Spirtes et al. 2000, pp. 84-85 ).  

Demiralp and Hoover (2003) investigated the PC algorithm using Monte Carlo methods.  

The SGS algorithm assumes that graphs are acylical (what VAR analysts typically refer 

to as “recursive”) – that is, there are no loops in causal chains such that an effect feeds 

back onto a direct or indirect cause.  Acyclicality rules out simultaneous equations.  The 

SGS algorithm proceeds in three stages: 

 

Stage 1.  Elimination of Edges 

1. Start with a graph in which each variable is assumed to be connected by an 

undirected causal edge. 

2. Test for the unconditional correlation of each pair of variables, eliminating the 

edge in the graph whenever the absence of correlation cannot be rejected. 

3. Test for the correlation of each pair of variables conditional on a third variable, 

again eliminating the edge if correlation is absent.  Continue testing pairs 

conditional on pairs, triples, quadruples, and so on until the graph is pared down 

as far as the data permit.4 

                                                 
3 Absence of conditional correlation is a necessary, but not sufficient, condition for statistical 
independence. 
4 This step distinguishes the SGS algorithm (Spirtes et al. 2000, pp. 82-83) from the more commonly used 
PC algorithm (Spirtes et al. 2000, pp. 84-85, Pearl 2000, pp. 49-51, Cooper 1999, p. 45, figure 22, 
Demiralp and Hoover 2003, pp. 766-767).  The PC algorithm tests independence between two variables 
that had been connected by an edge in the previous round conditional only on variables that were 
themselves adjacent to one of the two variables in the previous round.  The SGS algorithm tests the pair of 



Demiralp, Hoover, and Perez  “Bootstrap Methods for the SVAR” 
28 March 2006 

 8

 

Stage 2. Statistical Orientation of Edges 

4. For each conditionally uncorrelated pair of variables (i.e., ones without a direct 

edge) that are connected through a third variable, test whether they become 

correlated conditional on that third variable.  If so, the third variable is an 

unshielded collider.  Orient the edges as pointing into the unshielded collider.   

 

Stage 3. Logical Orientation of Edges 

5. If there are any pairs A and C that are not directly connected but are indirectly 

connected A → B ⎯ C, then orient the second edge toward C, so that the triple is  

A → B → C.   

6. If there is a pair of variables, A and B connected both by an undirected edge and a 

directed path, starting at A, through one or more other variables to B (i.e., a path 

in which the arrows all orient in a chain), then orient the undirected edge as  

A → B. 

 

 Steps 1-4 are statistical; the next two steps are logical.  Step 5 follows logically, 

because orienting the undirected edge in the other direction would turn the pattern into an 

unshielded collider, which would have already been identified in Step 4.  Step 6 follows 

because orienting the undirected edge in the other direction would, contrary to 

assumption, render the graph cyclical.   

                                                                                                                                                 
variables against every set of variables of the right number for that round, whether or not they were 
connected to the test pair in the previous round.  The SGS algorithm may detect conditional independence 
better in the presence of nonlinearities, but its computational complexity rises exponentially even when the 
true underlying graph is sparsely connected.  Comparison of our results in section 4, especially Figures 6 
and 7, with those of Hoover and Demiralp (2003) confirm that the two algorithms generate similar results 
for small numbers of variables.  
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 The SGS algorithm can be illustrated with the example in Figure 1.  Panel A 

shows the graph of the data-generating process.  It determines just what the tests should 

find, small-sample problems to one side.  The graph corresponds to a particular 

matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10
01
0010
0001

0

ZYZW

YXYW

aa
aa

A , where the variables are ordered WXYZ, the rows 

correspond to effects and the columns to causes, and the aij to the non-zero elements.   

 Step 1 starts with panel B in which each variable is connected to every other 

variable by an undirected edge.  Step 2 eliminates edge 1, because W and X are 

unconditionally uncorrelated in the true graph.  Step 3 eliminates edge 5 (X and Z are 

uncorrelated conditional on Y).  Step 4 orients edges 2 and 3 toward Y (W and X are 

correlated conditional on Y – i.e., Y is an unshielded collider on WYX).  Step 5 orients 

edge 6 towards Z.  Step 6 orients edge 4 toward Z.  The algorithm is able to recover the 

true graph. 

 Not every true graph can be recovered uniquely.  A graph and a probability 

distribution are faithful when the independence relationships in the graph stand in one-to-

one correspondence with those implied by the probability distribution.  The skeleton of a 

graph is the pattern of its causal linkages ignoring their direction.  The observational 

equivalence theorem (Pearl 2000, p. 19, Theorem 1.2.8) states that any probability 

distribution that can be faithfully represented by an acyclical graph, can equally well be 

represented by another acyclical graph with the same skeleton and the same unshielded 

colliders.  A graph identical to panel A of Figure 1 except that edge 6 was reversed would 

not be observationally equivalent to panel A because it would add an unshielded collider 
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(Y on XYZ).  A graph that reversed edge 4 would be observationally equivalent to the 

graph in panel A because it would have the same skeleton and neither add nor subtract 

unshielded colliders.  While the graph with edge 4 reversed illustrates the observational 

equivalence theorem, Step 6 of the algorithm rules it out, since it possesses a cycle  

(W → Y → Z → W), which violates the antecedent of the observational equivalence 

theorem. 

 

3. An Application of the Bootstrap Procedure 
Swanson and Granger’s (1997) essential contribution was to realize that identification of 

the SVAR depends only on the contemporaneous correlations among variables and that 

the VAR itself filters out the lagged dynamics so that the residuals of a well specified 

VAR (the tÛ  in an estimated version of equation (2)) capture the relevant 

contemporaneous characteristics of the original variables.  Each element of tÛ can be 

thought of as a filtered variable purged of its time-series properties.  A graph-theoretic 

search algorithm can then be applied to attempt to recover the causal order among these 

filtered variables.   

 In one case, Swanson and Granger (1997, pp. 362-363) applied this filtering 

method and a causal search algorithm to updated quarterly data previously investigated 

by King et al. (1991).  Swanson and Granger’s VAR used 8 lags of the logarithms of real 

per capita consumption expenditures (C), real per capita gross private domestic fixed 

investment (I), per capita real balances (M), and real per capita private gross domestic 

product (Y) for the period 1949:1-1990:2.  Swanson and Granger’s algorithm restricted 

attention to linear chains in which each variable was allowed at most one direct cause 
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(e.g., A → B → C → D would be admissible, but A → B ← C → D would not).  With this 

restriction their algorithm considered only measures of first-order (i.e., unconditional) 

independence, which they implemented using tests of correlation between two variables 

conditional on a third, ignoring unshielded colliders.  They identified the skeleton of the  

graph as M ⎯ C⎯ I ⎯ Y.  Appealing to the extra-statistical assumption that at least one 

of M, C, or I should cause Y in the current period, they oriented the edges as M → C→ I 

→ Y.  Demiralp and Hoover (2003, pp. 762-763) applied the PC algorithm to similar data 

for the period 1949:1-2002:4 and identified the structure shown as the heavy black lines 

in Figure 2.  (Sources and construction of these data are described in Appendix A.)   

 But what confidence should anyone place in the identification selected by the 

algorithm?  We use the bootstrap procedure to evaluate the selected identification.  

Appendix B reports the details of the bootstrap procedure.  Here we provide only a 

sketch.   

 We start with the VAR that is used to identify the causal order.  A bootstrap 

realization is created by using the estimated coefficients from this VAR as well as its 

matrix of residuals ( Û ) resampled by columns with replacement,.  For each bootstrap 

realization, a new VAR is estimated and the matrix of its residuals ( U~ ) is retained as the 

time series of the filtered variables.  These are then fed into the SGS search algorithm and 

the results are recorded.  We construct a large number of bootstrap realizations and 

record the outcomes of the search. 

 The bootstrap results are displayed in two ways.  Table 1 gives the complete 

distribution of outcomes for each possible edge.  The column headed No Edge displays 

the percentage of bootstrap realization for which an edge was not found.  The other 
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columns each refer to possible orientations of the edge and report each as a percentage of 

the total number of realizations in which some edge was found.   

 An undirected edge (⎯) implies that the algorithm cannot select a unique causal 

direction, so that ceteris paribus the selected graph identifies an equivalence class with 

one member with the edge directed one way and the other with the edge reversed.   

 A bidirectional edge (↔) appears to violate the assumption of acylicality.   The 

algorithm sometimes may select a bidirectional edge nonetheless, because it orients edges 

based on triples of variables, rather than on the whole graph.  Inconsistencies can arise 

for three reasons.  First, they may be artifacts of small samples.  Second and more 

interestingly, practitioners of graph-theoretic methods have seen them as evidence of 

omitted latent variables in otherwise acyclical graphs (see Scheines et al. 1994, pp. 90).  

Third, economists naturally may interpret them as evidence of simultaneous causality.  

This is an especially attractive option if we are willing to maintain the assumption of 

causal sufficiency – that is, that there are no important omitted variables. 

 The results give strong support for the skeleton identified in Figure 2.  That 

skeleton omits two edges and the bootstrap typically omits those edges as well:  between 

I and M in 94 percent of the realizations and between M and Y in 100 percent of the 

realizations.  The highest number of omissions for any of the edges in the selected 

skeleton is 16 percent, and two edges are never omitted. 

 The data are repackaged in Figure 2 to provide easy-to-grasp summary statistics.  

Each edge is associated with a triple Exists/Directed/Net Direction.  The first number, 

Exists, is the percentage of realizations in which an edge is found (i.e., it is the 

complement of the No Edge value).  The second, Directed, indicates the percentage of 
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existing edges for which there is a definite direction – that is, the sum of the three 

columns headed “→” and “←” and “↔” divided by (1–No Edge).  Finally, Net Direction 

indicates the difference between unidirectional edges going from earlier to later ordered 

variables and those going from later to earlier as a percentage of the directed edges – that 

is, the difference between the columns headed “→” and “←” divided by the sum of the 

same two columns.  The order of variables is that in the left-hand column of Table 1, 

shown in Figure 2 as the clockwise arrangement of the variables starting from the upper 

left corner (C).  A negative number, therefore indicates an edge directed from a higher to 

a lower ordered variable – for example, from Y to I.   

 To illustrate, consider the edge between C and M, which the SGS algorithm 

identified it as C ← M (we adopt the convention of always writing the lower ordered 

variable on the left).  Its statistics, 87/75/-100, indicate that it is selected by the bootstrap 

procedure in 87 percent of the realizations, found to have a definite direction in 75 

percent of the realizations in which it is selected, and is 100 percentage points more 

frequently oriented C ← M than C → M. 

 Overall, the bootstrap provides support for the orientation of the edges, as well as 

for the skeleton.  Both the Directed and Net Direction statistics correspond to the 

orientation of the identified edges.  Two edges require further comment.  First, the edge 

between I and Y is directed in the bootstrap only 40 percent of the times that it is selected, 

although when it is directed it is oriented as in the identified graph (I ← Y) by 95 points 

more than the reverse.  While this orientation would appear to be only weakly supported, 

notice that reversing the orientation, holding all other edges fixed, would violate the 

maintained hypothesis that the graph is acyclical by introducing a loop:  I → Y→ C → I.   
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 Second, the search algorithm directs the edge between C and I in 67 percent of the 

cases in which it is selected, but with only a 19 point advantage for the selected direction 

(C → I) over the reverse.  This is confirmed in Table 1 which shows a fairly even 

division between the edge being undirected and it taking each of the unidirectional 

orientations.  However, given the high level of confidence in the orientation of C ← Y 

and C ← M edges, directing the edge as C ← I would not be attractive.  It would imply 

that C was an unshielded collider that had not been identified.  C is found to be an 

unshielded collider in only 20 percent of the realizations.  Thus, despite the two edges the 

directions of which are individually more weakly identified edges, the bootstrap 

procedure, viewed as a whole, provides moderately strong support for the graph 

identified in Figure 2.  

 Figure 3 demonstrates why it matters which order is selected.  In the four-variable 

system, there are sixteen impulse-response functions.  We display three that illustrate the 

range of variation.  Each panel displays one of these impulse-response functions for each 

of the three identification schemes:   

1. A Choleski ordering M, C, I, Y, corresponding to 
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2. Swanson and Granger’s (1997) causal chain M → C → I → Y, corresponding to 
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3. the order selected by the SGS algorithm (Figure 2), corresponding to 
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 In each panel, the impulse-response functions for the Choleski ordering and 

Swanson and Granger’s causal chain are similar, while those for the SGS-selected order 

are quite distinct.  In panel A, the impulse-response function of M for a shock to C for the 

SGS-selected order is positive at all horizons and globally increasing, while those for the 

other two orders are negative.  While the impulse-responses in the other two panels do 

not display such a qualitative contrast, they are nonetheless quantitatively distinct.  All 

three impulse-responses of Y to M in panel B show a similar pattern, but the impulse 

response corresponding to the order chosen by the SGS algorithm lies well below the 

other two, especially for the first half of the forecast period.  The quantitative gap is even 

larger and shows less tendency to converge over time with the impulse responses of Y to 

a shock to Y.  And where the impulse responses for both Swanson and Granger’s and the 

Choleski order start positive and then turn negative, the impulse response for the order 

chosen by the SGS algorithm never becomes negative at all.   

 The close similarity of impulse-response functions for the Choleski order and 

Swanson and Granger’s causal chain is not too surprising as the causal chain (in contrast 

to the SGS-selected order) is an overidentifying restriction on that particular Choleski 

order.  The SGS-selected order is, however, an overidentifying restriction of two other 

Choleski orders:  M, Y, C, I and Y, M, C, I.  The impulse-response functions for these two 

Choleski orders are in fact very close to those for the SGS-selected order.  This similarity 
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points to the usefulness of causal search algorithms in choosing among just-identified 

causal orders that could not be distinguished on, for example, a likelihood criterion alone. 

 

4. How Well Does the Bootstrap Indicate the Uncertainty of Causal Search? 
Now that we have seen how to apply the bootstrap procedure, we need to ask whether its 

guidance is reliable.  We know from Monte Carlo simulations that the performance of the 

causal search algorithm depends on the signal-to-noise ratios of the causal linkages in the 

true data-generating process.  Monte Carlo simulations are based on the specification of 

an artificial “true” data-generating process.  In practice, of course, we do not know the 

true data-generating process.  Our assessment of reliability is guided by the following 

idea:  the bootstrap procedure is reliable if it gives us guidance that would mimic that of a 

Monte Carlo simulation, if we somehow had access to the truth.    

 We begin our assessment of the bootstrap procedure with a known SVAR.  We 

evaluate the performance of SGS search algorithm in a Monte Carlo simulation.  This 

simulation then becomes the standard against which we judge the success of the bootstrap 

procedure.  Since the bootstrap is a solution to an essentially statistical problem, we 

evaluate its success with respect to the four statistical steps of the SGS algorithm – 

namely, how well it does at identifying the skeleton and unshielded colliders of the graph 

of the true SVAR.  The bootstrap procedure would work ideally if it reproduced the 

results of the Monte Carlo simulation. 

 Appendix C reports the details of the design of the simulation experiments.  Here 

we provide only a sketch.   

1. We start with two graphs and the A0 matrix of their associated SVARs.  Model 1 

(Figure 4) represents three unshielded colliders:  y4 on three different paths –  
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y1 y4 y2,  y1 y4 y3, and y2 y4 y3.  Model 2 (Figure 5) is an elaboration of Model 1:  

the edge added between y1 and y2 acts as a shield, so that y4 on path y1y4y2 is no 

longer an unshielded collider.  The additional edge 5 adds another unshielded 

collider, while the additional edge 6 does not.  Model 2, therefore, also has three 

unshielded colliders:  y4 on paths y1y4y3 and y2y4y3; and y2 on y1y2y5.  And since 

edge 6 can be reversed without changing the skeleton or the unshielded colliders, 

the best that the SGS algorithm could do is to find an undirected edge between y3 

and y6.   

 We also consider two further models.  Model 3 (not shown) is identical to 

Model 1 except that it reverses edge 3.  This reduces the number of unshielded 

colliders to just one:  y4 on the path y1y4y3.  Similarly, Model 4 (not shown) is 

identical to Model 2 except that it reverses edge 4.  There are now only two 

unshielded colliders:  y2 on y1y2y5 and y3 on y4y3y6.  The algorithm cannot identify 

the direction of edge 2. 

2. The SVARs corresponding to Models 1-4 are used to create simulated sets of 

pseudo-real-world data.  Each realization constructs a time-series of 500 

observations based on the assignment of a different set of random values to the 

non-zero off-diagonal coefficients (the ijα ) of the A0 matrix.  The coefficients are 

drawn uniformly from an interval that ensures that the ex ante t-statistics, which 

provide a measure of the signal-to-noise ratio, are bound between 0 and about 10.   

3. We then estimate a VAR like equation (2) for each realization of the pseudo-real-

world data, retain the residuals, and treat them as filtered variables that form the 

input to the SGS search algorithm.  The output of the search is then recorded and 
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compared to the known graph of the model.  These comparisons are reported as 

the outcomes of the Monte Carlo simulations.  These simulations are the standard 

against which the bootstrap procedure is judged.  

4. We apply the bootstrap procedure, constructing a large number of bootstrap 

realizations, for each realization of the pseudo-real-world data and record the 

outcomes. 

 The key statistical decision in the SGS algorithm starts from the null hypothesis 

that a conditional correlation equals zero.  Rejection of the null implies, in steps 1-3, that 

an edge is not removed from the graph and, in step 4, that an unshielded collider is 

identified.  An error of commission (falsely including an edge or falsely identifying an 

unshielded collider) is, therefore, an example of type I error, and the rate of type I error 

corresponds to the size of the procedure.  Analogously, an error of omission (falsely 

omitting an edge or failing to identify an unshielded collider) is an example of type II 

error, and the complement of the rate of type II error corresponds to the power the 

procedure. 

 Figure 6 reports the size and power for identification of the skeleton of Model 1 

for both the Monte Carlo and the bootstrap procedure.  The horizontal axis reports the 

signal-to-noise ratio of the parameterization of the A0 matrix measured as the mean ex-

ante t-statistic for the edges in Figure 4.   

 The critical values of the tests of conditional correlation for the Monte Carlo 

simulations are set at 10 percent.  Notice that, when signal-to-noise ratios are very low, 

the size of the procedure is also approximately 10 percent; but, when signal-to-noise 

ratios are very high, the size of the procedure falls by about half to 6 percent.  This is 
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consistent with the results of Monte Carlo experiments on the PC algorithm reported by 

Demiralp and Hoover (2003).  Figure 7 reports results for size and power for the 

unshielded colliders in Model 1.  The pattern is similar to that in Figure 6, though at high 

signal strengths, type I error falls to nearly zero. 

 Preliminary experimentation on Model 1 showed that using a 10-percent critical 

value for the tests of conditional correlation in the SGS algorithm applied to the bootstrap 

resulted in a size of the procedure systematically higher than that for the Monte Carlo 

simulations.  Experimentation demonstrated that by reducing the critical value to 2.5 

percent it was possible to match the size of the Monte Carlo procedure extremely well as 

shown in Figure 6.  The comparative size reported in Figure 6 does not, therefore, 

represent an independent test of the quality of the bootstrap procedure.  However, the 

same adjustment to the critical value is applied to Model 2-4 with no further model-

specific calibration.  Table 2 shows that the match between the size of the Monte Carlo 

and bootstrap procedures is very close for both the skeletons and the unshielded colliders 

(look at the errors of commission, ignoring Model 2A, which is discussed below).   

 Turning to errors of omission, Figure 6 shows that the power of the bootstrap 

procedure to identify the skeleton of Model 1 is uniformly lower than that of the Monte 

Carlo.  The power of both the Monte Carlo and the bootstrap increase as signal-to-noise 

ratios increase.  The mean difference between the two curves is 8.6 percentage points. 

 Figure 7 shows that for Model 1, when signal-to-noise ratios are low, both the 

Monte Carlo and the bootstrap procedures falsely identify unshielded colliders with a size 

of 10 percent (again approximately the critical value of the conditional correlation tests in 

the Monte Carlo), and almost never falsely identify them when signal strengths are high.  
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The power of the search algorithm to identify unshielded colliders correctly as indicated 

by the Monte Carlo is very low when signal strengths are low, but rises to 85 percent 

when they are high.  The bootstrap procedure also shows this rising pattern, but remains 

systematically less powerful than the Monte Carlo with a mean difference between the 

two curves of 11.3 percentage points. 

 All four models show similar patterns of type I and type II errors.  The main 

question that we want to answer is how well the bootstrap algorithm mimics the results 

that we would find in a Monte Carlo study, were we lucky enough to know the true 

structure.  We have already seen that the bootstrap algorithm with the adjustment to the 

critical value mimics type I error closely, but differs on type II error to a non-trivial 

degree.  Table 2 presents the differences between the bootstrap algorithm and the Monte 

Carlo for all four models.  The pattern of differences for Models 2, 3, and 4 are similar to 

those for Model 1.   

 To investigate the effect of the critical value adjustment somewhat further, we 

also compare the Monte Carlo to the bootstrap algorithm for Model 2 with the critical 

value in the bootstrap set to 10 percent (rather than the adjusted 2.5 percent).  The results 

(shown in Table 2 as Model 2A) nearly reverse the pattern with the adjusted critical 

value.  Now the bootstrap matches the Monte Carlo on errors of omission for the skeleton 

very closely, but differs by 9.2 percentage points (on average over different signal 

strengths) on errors of commission.  The pattern is much the same with respect to 

unshielded colliders.  These patterns are reflective of the usual tradeoff between size and 

power.  They show that we can calibrate the bootstrap to either extreme, and possibly 

through an intermediate setting of the critical value in the bootstrap might choose some 
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more desirable compromise in matching the Monte Carlo properties on one or other type 

of error. 

 We conclude from these simulation experiments that the bootstrap procedure 

provides a reasonable method for assessing the reliability of causal structures identified 

by the SGS algorithm.  With an adjustment to the critical value in the tests of conditional 

correlation, size can be controlled with reasonable precision.  Power is systematically 

lower than Monte Carlo simulations indicate.  This implies that the bootstrap procedure 

will suggest the omission of a causal linkage or fail to direct it too frequently – although 

the mean errors appear moderate.  To look at this result more positively, if the bootstrap 

confirms a causal linkage, that confirmation is unlikely to be spurious:  the bootstrap 

method should lead to few false positives. 

 

5. The Utility of Graph-theoretic Algorithms  
Demiralp and Hoover (2003) showed that the graph-theoretic PC algorithm was very 

successful in finding the skeleton and somewhat successful in directing the edges of the 

causal graph corresponding to the contemporaneous causal order of structural vector 

autoregressions.  These findings held out the promise that data-based methods might 

replace the ad hoc and largely unconvincing a priori arguments that VAR analysts have 

typically used to choose the causal order of the SVAR.  Unfortunately, while it was 

possible to show good results for particular structures, it was not clear how one could 

assess the reliability of a causal ordering chosen by a search algorithm in the typical cases 

in which, unlike Monte Carlo experiments, we do not have the true order to hand to serve 

as a standard of comparison. 
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 In this paper, we have proposed a bootstrap procedure that allows the investigator 

to assess the performance of the SGS algorithm (a close relative of the PC algorithm) 

using only information readily to hand – that is, the data themselves.  Using data from 

Swanson and Granger (1997), we showed that this bootstrap procedure was an effective 

tool.  And, by comparing the results of the bootstrap procedure to those of Monte Carlo 

experiments on known models, we were able to show that the bootstrap sufficiently well 

mimics the Monte Carlo that it can provide useful guidance on the reliability of inference 

using graph-theoretic algorithms to determine the causal order of SVARs. 
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Appendix A.  The Data5  

All the raw series, except M1, are from the U.S. National Income and Product Accounts 
and were downloaded from the Haver Analytics United States Economic Statistics 
database.  Except where noted, they are seasonally adjusted, stated in billions of constant 
1996 dollars, and cover 1947:1-2002:4.  Haver codes are in bold type.  Personal 
Consumption Expenditure = CH; Gross Private Domestic Fixed Investment = FH; M1 
monetary aggregate (MN) for 1947:1-1958:4 = M1 monetary aggregate from Board of 
Governors (1976), Table 1.1, pp. 17-18, column 2 (“Money Stock: Total”) × 0.97966 and 
for 1959:1-2002:4 = FM1 (data are billions of current dollars; quarterly values are 
averages of monthly values); Government Consumption Expenditure and Gross 
Investment (current dollars) = G; Government Consumption Expenditure and Gross 
Investment (constant dollars) = GH; Gross National Product (current dollars) = GNP; 
Gross National Product (constant dollars) = GNPH; Civilian Noninstitutional Population 
over 16 Years Old = LNN. 
 
 Data used in paper are constructed as follows:  C = log(CH/LNN);  
I = log(FH/LNN); M = log[MN/(P × LNN)], where P = (GNP – G)/(GNPH – GH);  
Y = log[(GNPH – GH)/LNN]. 
 
 
Appendix B.  The Bootstrap Procedure 

1. Start with an estimate of the reduced-form using the notation of section 1 with the 
addition that a “hat” (^) indicates an estimated value: 
 
(B.1)    ttt L UYBY ˆ)(ˆ

1 += − . 
 
Let ]ˆ[ˆ

tUU = , where Û is an N × T matrix with columns tÛ . 

2. Let k = 1, 2, . . . K be the bootstrap realization, and j = 1, 2, . . . J, where J > > T, 
be the pseudo-time period. (In the simulations in this paper, T = 500, and J = 
1,500.)  Construct a set of bootstrap pseudo-observations recursively, starting 
with the initial condition =0

~
kY 0, with 

 
(B.2)    BS

kj
BS

jk
BS
kj L UYBY += − )1()(ˆ , 

 

where each BS
kjU is a scaling factor, 

VLT
LT
−−

−  times one of the columns of Û  

drawn randomly with replacement, where L is the order of the lags of the VAR 
and V = N + 1 (i.e., the number of variables in each equation of the VAR 
including the constant).  The scaling factor corrects for losses in degrees of 
freedom in estimating the residuals from the VAR.  Define the pseudo-data set as 

                                                 
5 This appendix is drawn verbatim from Demiralp and Hoover (2003), Appendix B. 
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][]~[~ BS
kiktk YYY ==  to be the last T of the J columns of recursive pseudo-

observations.  That is, the observations for t = 1, 2, . . . T correspond to those for i 
= J – T + 1, J – T + 2, . . . J – 1, J.  (The long “startup period” is meant to 
eliminate dependence on the initial condition.) 

3. For each k, run the casual search algorithm on the residuals ( kU~ ) from a reduced 

form VAR of kY~  and record the graph.  (In this paper, we use the SGS algorithm, 
although the PC algorithm or other algorithms could be used.)  

4. For each possible edge between variables (elements of Y ) record the number of 
times it appears a) missing (no edge); b) undirected (⎯); c) directed from lower to 
a higher ordered variable(←); d) directed from a higher to a lower order variable 
(→); and e) bidirectional (↔).   
 

 

Appendix C.  Design of the Simulation Experiments 
1. We evaluate four SVAR models with contemporaneous causal orders described in 

section 4 of the main text.  Evaluations are made with respect to the reference graph 
as described in point 5 below. 

2. We start with a set of artificially generated data constructed by Monte Carlo methods 
as follows:   

a) A set of contemporaneous parameterizations is indexed p = 1, 2, . . . P;  and, 
for each parameterization, a set of Monte Carlo realizations is indexed m = 1, 
2, . . . M,  so that there are PM total realizations.  (For all models, P is set to 
200; and, for Models 1 and 3, M is set to 200, yielding 40,000 realizations; 
while, for Models 2 and 4, M is set to 100, yielding 20,000 realizations. 

b) The data for each Monte Carlo realization are generated recursively.  For each 
realization, let j = 1, 2, . . . J, indicate time, start with the initial 
condition MC

0Y = 0, and construct subsequent observations according to  
 
(B.2)  pmjp

MC
jpmp

MC
pmj EAAYAY ~1

0)1(
1

0
−

−
− += . 

 
where: 

i) Each model includes 1 lag of each variable, and A is a fixed N × N matrix 
of coefficients on the lagged variables, for which all diagonal elements are 
set to 0.25 and all off-diagonal elements are set to 0.05. 

ii) 0pmA = [apmgh] is an N × N (g = 1, 2, . . . , N; h = 1, 2, . . . , N) matrix of 
contemporaneous coefficients with ones on the main diagonal, and zeroes 
placed to correspond to the causal orders for each model in point 1 above.  
The non-zero elements of 0pmA  are drawn randomly from a range that 
yields ex ante t-statistics between 0 and 10 (averaging over all edges), with 
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oversampling in the range that produces average ex ante t-statistics 
between 0 and 1. (See subpoint v below on the evaluation of ex ante t-
statistics.) 

iii) pmjE~  = [Epmnj] is an N-element column vector with each element drawn 
randomly from an independent normal distributions with mean 0 and 
variance 1. 

iv) To determine the ex ante t-statistics:  1. each model is simulated 1000 
times according to subpoint i with randomly drawn contemporaneous 
coefficients, estimated, and the coefficient values (β) and the 
corresponding t-statistics recorded; 2. a regression equation is estimated  
t = ϕ + μβ + error is estimated; 3. in the simulation experiments, the ex 
ante t-statistic for any coefficient is given as βμϕ ˆˆˆ +=t , where the hats 
(“^”) indicate estimated or predicted values. 

Define the pseudo-data set as ][][ MC
pmipmtpm YYY ==

((
, t = 1, 2, . . . 500, to be the 

last 500 of the J columns of recursive pseudo-observations, where  
J >> 500.   That is, the observations for t = 1, 2, . . . 500 correspond to those 
for i = J – 499, J – 498, . . . J – 1, J. (As with the bootstrap method in 
Appendix B, the long “startup period” is meant to eliminate dependence on the 
initial condition.) 

3. For each Monte Carlo realization, run the SGS algorithm on the residuals from a 
reduced form VAR of pmY

(
 and record:  a. the ex ante t-statistics for each edge and b. 

whether edges are present or absent and, if present, how they are oriented.  Results 
are assessed by comparison to the known reference graph, as described in point 5 
below.  The resulting PM realizations in the current study, correspond to the Monte 
Carlo simulations reported in Demiralp and Hoover (2003) for the PC algorithm.  The 
results provide a practical measure of how well the SGS algorithm does in 
discovering the true causal order underlying the data.  

4. For each Monte Carlo realization run the bootstrap procedure described in Appendix 
B using mY

(
as the input; and, for each bootstrap realization (k), record:  a. the ex ante 

t-statistics for each edge;  b. whether edges are present or absent;  c. if edges are 
present, how they are oriented; and d. the unshielded colliders.  Results are assessed 
by comparison to the known graph (see point 1 above), as described in point 5 below.  
(The number of bootstrap realizations for each Monte Carlo realization is set to K = 
100, so that, for Models 1 and 3, the total number of bootstrap realizations is 
4,000,000 (=PMK = 200 × 200 × 100) and, for Models 2 and 4, 2,000,000 (=PMK = 
200 × 100 × 100).  The relatively small number of bootstrap realizations per Monte 
Carlo realization is needed to keep the computing time manageable.)  The results 
provide a measure of how closely the bootstrap conforms to the Monte Carlo in 
particular cases. 

5. To assess outcomes in points 3 and 4 above, the graphs identified by the SGS 
algorithm applied to simulated data are compared edge by edge to the graphs that are 
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used to generate the data (see point 1 and point 2 above).  Because of Pearl’s 
observational equivalence theorem (see section 2), an ideally functioning search 
algorithm working with infinite data will not be able to orient some edges.  
Comparisons are not made to the true graph that generates the data, but to a reference 
graph that represents the equivalence class (that is, to the graph that leaves edges 
unoriented if, in the true graph, they can be reversed without changing the number or 
location of the unshielded colliders).  Results are assessed according to success at the 
statistical identification of the skeleton and the unshielded colliders.  There are three 
possible outcomes:  i. correct:  an edge or unshielded collider is identified as absent 
when it is absent in the reference graph or identified as present when it is present in 
the reference graph; ii. omitted:  an edge or unshielded collider that is present in the 
reference graph is identified as absent; iii. committed:  an edge or unshielded collider 
that is absent in the reference graph is identified as present. 
 
 Results are reported as rates taking the number of possible realizations of a 
particular outcome as the base.  For example, in Model 2 (Figure 5), there are six 
edges out of a total of fifteen possible between six variables.  The base for computing 
the rate of omissions is, therefore, six per search.  In contrast, the base for the rate of 
commissions is nine – that is, the number of possible edges that are in fact missing in 
the reference graph.   
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Table 1 
Bootstrap Evaluation of the SGS-selected Causal Order  

for the King et al. Data Set 

SGS-selected Causal Order Edge Identification 
(percent of bootstrap realizations) 

Edge direction ⎯ ← no edge → ↔ 
C → I 28 23 16 33 0 
C ← M 22 65 13   0 0 
C ← Y 32 67   0   1 0 
I no edge M   0   6 94   0 0 
I ← Y 61 39   0   1 0 
M no edge Y   0   0 100   0 0 
Notes:  Entries in bold type correspond to the SGS-selected direction. 

 See text (section 2) for a description of the SGS search algorithm and Appendix B for a 
description of the bootstrap procedure. 

 See Appendix A for data definitions and sources. 
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Table 2 
How Well Does the Bootstrap Mimic the Monte Carlo Simulations? 

  Difference between Bootstrap and Monte Carlo Simulations (percentage points) 
  Signal-to-Noise Ratios (measured by ex ante t-statistics) 

Model Errors of: t < 1 1 < t < 2 2 < t < 3 3 <  t< 4 4 < t < 5 5 < t < 6 6 < t < 7 t > 7 mean 
Skeleton 

Model 1 Commission   0.9   1.4   1.1   1.6 0.9  0.5 0.7 0.2  0.9 
Model 2 Commission   1.5   1.1   0.9   1.2 1.3  0.9 0.5 0.2  0.9 

  Model 2A Commission 12.4 11.8 11.0   9.7 8.5  7.5 6.7 5.8  9.2 
Model 3 Commission   1.1   1.1   1.0   1.0 0.6  0.7 0.5 0.6  0.8 
Model 4 Commission   1.1   1.0   1.0   0.8 0.8  0.6 0.6 0.3  0.8 

           
Model 1 Omission   4.3 11.8 14.1 13.1 8.8  7.1 6.6 2.7  8.6 
Model 2 Omission   4.3   9.6 13.0 13.9 8.7  6.5 3.3 2.2  7.7 

  Model 2A Omission  -7.6  -1.6   2.0   2.6 0.4 -0.1 0.2 0.6 -0.4 
Model 3 Omission   7.3 11.7 14.0 10.1 6.8  6.1 5.0 3.0  8.0 
Model 4 Omission   6.1 10.9 14.0 10.0 6.7  6.2 4.3 2.7  7.6 

           
Unshielded Colliders 

Model 1 Commission  0.3  1.7   2.6   2.1 1.6   0.9   0.7   0.3   1.3 
Model 2 Commission -0.1  0.2  -0.5  -1.5 -0.9  -0.4   1.2   2.6   0.1 

  Model 2A Commission -7.6 -1.6   2.0   2.6 0.4  -0.1   0.2   0.6  -0.4 
Model 3 Commission -0.3 -0.5  -0.7  -0.4 0.0   0.3   0.5   0.8   0.0 
Model 4 Commission -0.2 -0.6  -0.9  -0.4 -0.1   0.1   0.7   0.7  -0.1 

           
Model 1 Omission  1.2  7.4 14.8 19.8 13.5 13.1 13.5   7.3 11.3 
Model 2 Omission  1.8  5.5 11.9 17.6 16.1 12.5   7.9   8.1 10.2 

  Model 2A Omission -3.0  0.8   6.8 10.0   7.5 7.3   9.2 10.4   6.1 
Model 3 Omission  2.7  9.0 15.2 13.5 10.8 11.8   8.9   8.1 10.0 
Model 4 Omission  1.2  6.7 15.5 14.3 11.0 11.3   9.4   4.9   9.3 
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Figure 1 
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Figure 2 
Causal Order for King et al. Data 
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                 0/--/-- 
 

 
 

Notes:  See test (section 2) for a description of the SGS search algorithm and Appendix B   
 for a description of the bootstrap procedure. 
 See Appendix A for data definitions and sources. 
 Causal connections selected and oriented by the SGS search algorithm shown as  

black arrows; those omitted as gray lines.  
 Triples associated with each edge are Exist/Directed/Net Direction where 

Exist = the percentage of bootstrap replications in which an edge is selected; 
Directed = edges directed as a percentage of edges selected; 
Net Direction = difference between edges directed low-to-high (→) and high-to-low (←), where 

higher variables are the more clockwise starting in the upper left corner (at C), as a percentage of 
the directed edges. 

 Circled variables are found as unshielded colliders on paths, and with rates (percentage of  
replications) as indicated in boxed notes.  Any unshielded collider found in fewer than 1 percent of 
replications is omitted. 

 Data may differ from values computed from Table 1 due to rounding error. 
 
 

 

MCY: 64 
ICM: 20

MIY: 6 
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Figure 3 
Impulse-response Functions for Alternative Causal Orderings of the Swanson-Granger Data 
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Figure 3.A
Impulse Responses of Money to a Consumption Shock for 

Three Contemporaneous Causal Orderings
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Figure 3.C
Impulse Responses of GDP to a GDP Shock for 

Three Contemporaneous Causal Orderings
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Figure 3.B

Impulse Responses of GDP to a Money Shock for 
Three Contemporaneous Causal Orderings
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Figure 4 
Model 1 
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Figure 5 
Model 2 
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Figure 6
Monte Carlo versus Bootstrap for the Model 1 Skeleton
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Figure 7
Monte Carlo versus Bootstrap for the Model 1 Unshielded Colliders
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