12,961 research outputs found

    K Means Segmentation of Alzheimers Disease in PET scan datasets: An implementation

    Full text link
    The Positron Emission Tomography (PET) scan image requires expertise in the segmentation where clustering algorithm plays an important role in the automation process. The algorithm optimization is concluded based on the performance, quality and number of clusters extracted. This paper is proposed to study the commonly used K Means clustering algorithm and to discuss a brief list of toolboxes for reproducing and extending works presented in medical image analysis. This work is compiled using AForge .NET framework in windows environment and MATrix LABoratory (MATLAB 7.0.1)Comment: International Joint Conference on Advances in Signal Processing and Information Technology, SPIT201

    Confidence-guided Centroids for Unsupervised Person Re-Identification

    Full text link
    Unsupervised person re-identification (ReID) aims to train a feature extractor for identity retrieval without exploiting identity labels. Due to the blind trust in imperfect clustering results, the learning is inevitably misled by unreliable pseudo labels. Albeit the pseudo label refinement has been investigated by previous works, they generally leverage auxiliary information such as camera IDs and body part predictions. This work explores the internal characteristics of clusters to refine pseudo labels. To this end, Confidence-Guided Centroids (CGC) are proposed to provide reliable cluster-wise prototypes for feature learning. Since samples with high confidence are exclusively involved in the formation of centroids, the identity information of low-confidence samples, i.e., boundary samples, are NOT likely to contribute to the corresponding centroid. Given the new centroids, current learning scheme, where samples are enforced to learn from their assigned centroids solely, is unwise. To remedy the situation, we propose to use Confidence-Guided pseudo Label (CGL), which enables samples to approach not only the originally assigned centroid but other centroids that are potentially embedded with their identity information. Empowered by confidence-guided centroids and labels, our method yields comparable performance with, or even outperforms, state-of-the-art pseudo label refinement works that largely leverage auxiliary information

    Speeding Up MCMC by Efficient Data Subsampling

    Full text link
    We propose Subsampling MCMC, a Markov Chain Monte Carlo (MCMC) framework where the likelihood function for nn observations is estimated from a random subset of mm observations. We introduce a highly efficient unbiased estimator of the log-likelihood based on control variates, such that the computing cost is much smaller than that of the full log-likelihood in standard MCMC. The likelihood estimate is bias-corrected and used in two dependent pseudo-marginal algorithms to sample from a perturbed posterior, for which we derive the asymptotic error with respect to nn and mm, respectively. We propose a practical estimator of the error and show that the error is negligible even for a very small mm in our applications. We demonstrate that Subsampling MCMC is substantially more efficient than standard MCMC in terms of sampling efficiency for a given computational budget, and that it outperforms other subsampling methods for MCMC proposed in the literature.Comment: Main changes: The theory has been significantly revise
    • …
    corecore