3 research outputs found

    Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure

    Get PDF
    Today, about 10% of TLS connections are still using CBC-mode cipher suites, despite a long history of attacks and the availability of better options (e.g. AES-GCM). In this work, we present three new types of attack against four popular fully patched implementations of TLS (Amazon\u27s s2n, GnuTLS, mbed TLS and wolfSSL) which elected to use ``pseudo constant time\u27\u27 countermeasures against the Lucky 13 attack on CBC-mode. Our attacks combine several variants of the PRIME+PROBE cache timing technique with a new extension of the original Lucky 13 attack. They apply in a cross-VM attack setting and are capable of recovering most of the plaintext whilst requiring only a moderate number of TLS connections. Along the way, we uncovered additional serious (but easy to patch) bugs in all four of the TLS implementations that we studied; in three cases, these bugs lead to Lucky 13 style attacks that can be mounted remotely with no access to a shared cache. Our work shows that adopting pseudo constant time countermeasures is not sufficient to attain real security in TLS implementations in CBC mode

    Postcards from the post-HTTP world: Amplification of HTTPS vulnerabilities in the web ecosystem

    Get PDF
    HTTPS aims at securing communication over the Web by providing a cryptographic protection layer that ensures the confidentiality and integrity of communication and enables client/server authentication. However, HTTPS is based on the SSL/TLS protocol suites that have been shown to be vulnerable to various attacks in the years. This has required fixes and mitigations both in the servers and in the browsers, producing a complicated mixture of protocol versions and implementations in the wild, which makes it unclear which attacks are still effective on the modern Web and what is their import on web application security. In this paper, we present the first systematic quantitative evaluation of web application insecurity due to cryptographic vulnerabilities. We specify attack conditions against TLS using attack trees and we crawl the Alexa Top 10k to assess the import of these issues on page integrity, authentication credentials and web tracking. Our results show that the security of a consistent number of websites is severely harmed by cryptographic weaknesses that, in many cases, are due to external or related-domain hosts. This empirically, yet systematically demonstrates how a relatively limited number of exploitable HTTPS vulnerabilities are amplified by the complexity of the web ecosystem
    corecore