12 research outputs found

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Infective/inflammatory disorders

    Get PDF

    Computer aided assessment of CT scans of traumatic brain injury patients

    Get PDF
    A thesis submitted in partial fulfilment for the degree of Doctor of PhilosophyOne of the serious public health problems is the Traumatic Brain Injury, also known as silent epidemic, affecting millions every year. Management of these patients essentially involves neuroimaging and noncontrast CT scans are the first choice amongst doctors. Significant anatomical changes identified on the neuroimages and volumetric assessment of haemorrhages and haematomas are of critical importance for assessing the patients’ condition for targeted therapeutic and/or surgical interventions. Manual demarcation and annotation by experts is still considered gold standard, however, the interpretation of neuroimages is fraught with inter-observer variability and is considered ’Achilles heel’ amongst radiologists. Errors and variability can be attributed to factors such as poor perception, inaccurate deduction, incomplete knowledge or the quality of the image and only a third of doctors confidently report the findings. The applicability of computer aided dianosis in segmenting the apposite regions and giving ’second opinion’ has been positively appraised to assist the radiologists, however, results of the approaches vary due to parameters of algorithms and manual intervention required from doctors and this presents a gap for automated segmentation and estimation of measurements of noncontrast brain CT scans. The Pattern Driven, Content Aware Active Contours (PDCAAC) Framework developed in this thesis provides robust and efficient segmentation of significant anatomical landmarks, estimations of their sizes and correlation to CT rating to assist the radiologists in establishing the diagnosis and prognosis more confidently. The integration of clinical profile of the patient into image segmentation algorithms has significantly improved their performance by highlighting characteristics of the region of interest. The modified active contour method in the PDCAAC framework achieves Jaccard Similarity Index (JI) of 0.87, which is a significant improvement over the existing methods of active contours achieving JI of 0.807 with Simple Linear Iterative Clustering and Distance Regularized Level Set Evolution. The Intraclass Correlation Coefficient of intracranial measurements is >0.97 compared with radiologists. Automatic seeding of the initial seed curve within the region of interest is incorporated into the method which is a novel approach and alleviates limitation of existing methods. The proposed PDCAAC framework can be construed as a contribution towards research to formulate correlations between image features and clinical variables encompassing normal development, ageing, pathological and traumatic cases propitious to improve management of such patients. Establishing prognosis usually entails survival but the focus can also be extended to functional outcomes, residual disability and quality of life issues

    Treatment of Later Humoral Rejection with Anti-CD20 Monoclonal Antibody Rituximab: A Single Centre Experience

    Get PDF
    Humoral or vascular rejection is a B cell-mediated production of immunoglobulin (Ig) G antibody against a transplanted organ that results in immune complex deposition on the vascular endothelium, activation of the complement cascade, production of endothelial dysfunction and regional ischaemic injury

    Pruning the nodule candidate set in postero anterior chest radiographs

    No full text
    In this paper we describe and compare two different methods to reduce the cardinality of the set of candidates nodules, characterized by an high sensitivity ratio, and extracted from PA chest radiographs by a fully automatized method. The methods are a rule based system and a feed-forward neural network trained by back-propagation. Both the systems allow to recognize almost the 75% of false positives without losing any true positives
    corecore