1,707 research outputs found

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    Subset Warping: Rubber Sheeting with Cuts

    Full text link
    Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself

    Disconnected Skeleton: Shape at its Absolute Scale

    Full text link
    We present a new skeletal representation along with a matching framework to address the deformable shape recognition problem. The disconnectedness arises as a result of excessive regularization that we use to describe a shape at an attainably coarse scale. Our motivation is to rely on the stable properties of the shape instead of inaccurately measured secondary details. The new representation does not suffer from the common instability problems of traditional connected skeletons, and the matching process gives quite successful results on a diverse database of 2D shapes. An important difference of our approach from the conventional use of the skeleton is that we replace the local coordinate frame with a global Euclidean frame supported by additional mechanisms to handle articulations and local boundary deformations. As a result, we can produce descriptions that are sensitive to any combination of changes in scale, position, orientation and articulation, as well as invariant ones.Comment: The work excluding {\S}V and {\S}VI has first appeared in 2005 ICCV: Aslan, C., Tari, S.: An Axis-Based Representation for Recognition. In ICCV(2005) 1339- 1346.; Aslan, C., : Disconnected Skeletons for Shape Recognition. Masters thesis, Department of Computer Engineering, Middle East Technical University, May 200

    Multi-Dimensional Medial Geometry: Formulation, Computation, and Applications

    Get PDF
    Medial axis is a classical shape descriptor. It is a piece of geometry that lies in the middle of the original shape. Compared to the original shape representation, the medial axis is always one dimension lower and it carries many intrinsic shape properties explicitly. Therefore, it is widely used in a large amount of applications in various fields. However, medial axis is unstable to the boundary noise, often referred to as its instability. A small amount of change on the object boundary can cause a dramatic change in the medial axis. To tackle this problem, a significance measure is often associated with the medial axis, so that medial points with small significance are removed and only the stable part remains. In addition to this problem, many applications prefer even lower dimensional medial forms, e.g., shape centers of 2D shapes, and medial curves of 3D shapes. Unfortunately, good significance measures and good definitions of lower dimensional medial forms are still lacking. In this dissertation, we extended Blum\u27s grassfire burning to the medial axis in both 2D and 3D to define a significance measure as a distance function on the medial axis. We show that this distance function is well behaved and it has nice properties. In 2D, we also define a shape center based on this distance function. We then devise an iterative algorithm to compute the distance function and the shape center. We demonstrate usefulness of this distance function and shape center in various applications. Finally we point out the direction for future research based on this dissertation

    Decomposition and Description of the Nasal Cavity Form

    Get PDF

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework
    • …
    corecore