38 research outputs found

    A survey of cost-sensitive decision tree induction algorithms

    Get PDF
    The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making. This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field

    Network Intrusion Detection System in a Light Bulb

    Full text link
    Internet of Things (IoT) devices are progressively being utilised in a variety of edge applications to monitor and control home and industry infrastructure. Due to the limited compute and energy resources, active security protections are usually minimal in many IoT devices. This has created a critical security challenge that has attracted researchers' attention in the field of network security. Despite a large number of proposed Network Intrusion Detection Systems (NIDSs), there is limited research into practical IoT implementations, and to the best of our knowledge, no edge-based NIDS has been demonstrated to operate on common low-power chipsets found in the majority of IoT devices, such as the ESP8266. This research aims to address this gap by pushing the boundaries on low-power Machine Learning (ML) based NIDSs. We propose and develop an efficient and low-power ML-based NIDS, and demonstrate its applicability for IoT edge applications by running it on a typical smart light bulb. We also evaluate our system against other proposed edge-based NIDSs and show that our model has a higher detection performance, and is significantly faster and smaller, and therefore more applicable to a wider range of IoT edge devices

    RIDE: Real-time Intrusion Detection via Explainable Machine Learning Implemented in a Memristor Hardware Architecture

    Full text link
    Deep Learning (DL) based methods have shown great promise in network intrusion detection by identifying malicious network traffic behavior patterns with high accuracy, but their applications to real-time, packet-level detections in high-speed communication networks are challenging due to the high computation time and resource requirements of Deep Neural Networks (DNNs), as well as lack of explainability. To this end, we propose a packet-level network intrusion detection solution that makes novel use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding, which is fed into a DNN-based classifier. To enable explainability and support real-time detections at micro-second speed, we further develop a Software-Hardware Co-Design approach to efficiently realize the proposed solution by converting the learned detection policies into decision trees and implementing them using an emerging architecture based on memristor devices. By jointly optimizing associated software and hardware constraints, we show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level. Evaluation results on real-world datasets (e.g., UNSW and CIC-IDS datasets) demonstrate nearly three-nines detection accuracy with a substantial speedup of nearly four orders of magnitude

    Inducing safer oblique trees without costs

    Get PDF
    Decision tree induction has been widely studied and applied. In safety applications, such as determining whether a chemical process is safe or whether a person has a medical condition, the cost of misclassification in one of the classes is significantly higher than in the other class. Several authors have tackled this problem by developing cost-sensitive decision tree learning algorithms or have suggested ways of changing the distribution of training examples to bias the decision tree learning process so as to take account of costs. A prerequisite for applying such algorithms is the availability of costs of misclassification. Although this may be possible for some applications, obtaining reasonable estimates of costs of misclassification is not easy in the area of safety. This paper presents a new algorithm for applications where the cost of misclassifications cannot be quantified, although the cost of misclassification in one class is known to be significantly higher than in another class. The algorithm utilizes linear discriminant analysis to identify oblique relationships between continuous attributes and then carries out an appropriate modification to ensure that the resulting tree errs on the side of safety. The algorithm is evaluated with respect to one of the best known cost-sensitive algorithms (ICET), a well-known oblique decision tree algorithm (OC1) and an algorithm that utilizes robust linear programming

    CSNL: A cost-sensitive non-linear decision tree algorithm

    Get PDF
    This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification. The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes. The performance of the algorithm is evaluated by applying it to seventeen data sets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes

    Multi-objective Optimization for Incremental Decision Tree Learning

    Get PDF
    Abstract. Decision tree learning can be roughly classified into two categories: static and incremental inductions. Static tree induction applies greedy search in splitting test for obtaining a global optimal model. Incremental tree induction constructs a decision model by analyzing data in short segments; during each segment a local optimal tree structure is formed. Very Fast Decision Tree [4] is a typical incremental tree induction based on the principle of Hoeffding bound for node-splitting test. But it does not work well under noisy data. In this paper, we propose a new incremental tree induction model called incrementally Optimized Very Fast Decision Tree (iOVFDT), which uses a multi-objective incremental optimization method. iOVFDT also integrates four classifiers at the leaf levels. The proposed incremental tree induction model is tested with a large volume of data streams contaminated with noise. Under such noisy data, we investigate how iOVFDT that represents incremental induction method working with local optimums compares to C4.5 which loads the whole dataset for building a globally optimal decision tree. Our experiment results show that iOVFDT is able to achieve similar though slightly lower accuracy, but the decision tree size and induction time are much smaller than that of C4.5

    Factors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis

    Get PDF
    Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predicting drug injection among prisoners. Methods: Data of 2720 Iranian prisoners was studied to determine the factors influencing drug injection. The collected data was divided into two groups of training and testing. A logistic regression model and a CART were applied on training data. The performance of the two models was then evaluated on testing data. Findings: The regression model and the CART had 8 and 4 significant variables, respectively. Overall, heroin use, history of imprisonment, age at first drug use, and marital status were important factors in determining the history of drug injection. Subjects without the history of heroin use or heroin users with short-term imprisonment were at lower risk of drug injection. Among heroin addicts with long-term imprisonment, individuals with higher age at first drug use and married subjects were at lower risk of drug injection. Although the logistic regression model was more sensitive than the CART, the two models had the same levels of specificity and classification accuracy. Conclusion: In this study, both sensitivity and specificity were important. While the logistic regression model had better performance, the graphical presentation of the CART simplifies the interpretation of the results. In general, a combination of different analytical methods is recommended to explore the effects of variables. Keywords: Classification and regression trees, Logistic regression model, History of drug injection, Drug abus

    Cost-sensitive probabilistic predictions for support vector machines

    Full text link
    Support vector machines (SVMs) are widely used and constitute one of the best examined and used machine learning models for two-class classification. Classification in SVM is based on a score procedure, yielding a deterministic classification rule, which can be transformed into a probabilistic rule (as implemented in off-the-shelf SVM libraries), but is not probabilistic in nature. On the other hand, the tuning of the regularization parameters in SVM is known to imply a high computational effort and generates pieces of information that are not fully exploited, not being used to build a probabilistic classification rule. In this paper we propose a novel approach to generate probabilistic outputs for the SVM. The new method has the following three properties. First, it is designed to be cost-sensitive, and thus the different importance of sensitivity (or true positive rate, TPR) and specificity (true negative rate, TNR) is readily accommodated in the model. As a result, the model can deal with imbalanced datasets which are common in operational business problems as churn prediction or credit scoring. Second, the SVM is embedded in an ensemble method to improve its performance, making use of the valuable information generated in the parameters tuning process. Finally, the probabilities estimation is done via bootstrap estimates, avoiding the use of parametric models as competing approaches. Numerical tests on a wide range of datasets show the advantages of our approach over benchmark procedures.Comment: European Journal of Operational Research (2023
    corecore