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Abstract. Decision tree learning can be roughly classified into two categories: 
static and incremental inductions. Static tree induction applies greedy search in 
splitting test for obtaining a global optimal model. Incremental tree induction 
constructs a decision model by analyzing data in short segments; during each 
segment a local optimal tree structure is formed. Very Fast Decision Tree [4] is 
a typical incremental tree induction based on the principle of Hoeffding bound 
for node-splitting test. But it does not work well under noisy data. In this paper, 
we propose a new incremental tree induction model called incrementally 
Optimized Very Fast Decision Tree (iOVFDT), which uses a multi-objective 
incremental optimization method. iOVFDT also integrates four classifiers at the 
leaf levels. The proposed incremental tree induction model is tested with a large 
volume of data streams contaminated with noise. Under such noisy data, we 
investigate how iOVFDT that represents incremental induction method working 
with local optimums compares to C4.5 which loads the whole dataset for 
building a globally optimal decision tree. Our experiment results show that 
iOVFDT is able to achieve similar though slightly lower accuracy, but the 
decision tree size and induction time are much smaller than that of C4.5. 

Keywords: Decision Tree, Classification, Incremental Optimization, Stream 
Mining. 

1 Introduction 

How to extract knowledge efficiently from massive data has been a popular research 
topic. A decision tree, which presents the knowledge in a tree-like format, can be 
easily understood by both human and machine. Due to the high degree of 
comprehensibility, considered as one of the most important methods for classification.  

In general, there are roughly two approaches for decision tree learning. The first 
approach loads full data, multi-scanning and analyzing them. This process builds a 
static tree model by greedy search, i.e. ID3 [1], C4.5 [2], CART [3]. When new data 
come, the whole data (including historical and fresh data) is re-loaded to update 
algorithm. The second approach only requires loading a small part of samples in 
terms of Hoeffding bound and comparing the best two values of heuristic function for 
node-splitting test, i.e. VFDT [4] (which will be introduced in Section 2) and its 
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extensions [7,9,12,13]. Besides, static decision tree provides a global optimal model 
because it computes across the full samples by greedy search. Incremental tree 
maintains a local optimal model because it computes on a sufficient part of samples. 

One challenge to decision tree learning is associated with noise, which generally 
renders a data stream “imperfect”. The size of a decision tree model will grow 
excessively large under noisy data, so is an undesirable effect known as over-fitting. 
The imperfection significantly impairs the accuracy of a decision tree classifier 
through the confusion and misclassification prompted by the inappropriate data.  

For static decision tree learning, pruning algorithms help keep the size of the 
decision tree in check, although the majority are post-pruning techniques that remove 
relevant tree paths after a whole model has been built from a stationary dataset [5, 6]. 
For incremental decision tree learning, post-pruning is not suitable because no extra 
time is available for stopping tree building and pruning the branches under high-speed 
data streams environment. It is said that the excessive invocation of tie breaking can 
cause significant decline in VFDT performance on complex and noise data [12], even 
with the additional condition by the parameter τ. MVFDT [7] uses an adaptive tie-
breaking to reduce tree size for incremental tree.   

In this paper, we propose a new incremental decision tree induction inheriting the 
usage of Hoeffding bound in splitting test, so called Incrementally Optimized Very 
Fast Decision Tree (iOVFDT). It contains a multi-objective incremental optimization 
mechanism so as to maintain a small tree size and comparable accuracy, even for 
imperfect data. For higher accuracy, four types of functional tree leaf are integrated 
with iOVFDT. In the experiment, we compare iOVFDT to a classical static tree 
induction C4.5 and pre-pruning incremental tree induction MVFDT. The objective of 
this paper is to shed light into the following research questions. What are the 
significant differences between static (global optimum) and incremental (local 
optimum) decision tree? The answer can be found in experiment and discussion 
sections, which also show the superior performance of our new algorithm.    

The remainder of this paper is organized as follows. In the next section, we 
describe the classification problem for decision tree. In Section 3, we define the 
optimization problem for decision tree. Our new algorithm iOVFDT is presented in 
Section 4. Moreover, we provide the experimental comparison and discussion in 
Section 5. Finally, Section 6 concludes this paper.    

2 Optimization Problem for Decision Tree  

Suppose D is the full set of data samples with the form (X, y), where X is a vector of d 
attributes and y is the actual discrete class label. Attribute Xi is the i th attribute in X 
and is assigned a value of Xi1, Xi2… Xij, where j is the range of attribute Xi, |Xi| = j and 
1 ≤ i ≤ d. Class yk is the k class in y and is assigned a value of y1, y2… yk, where K is 
the total number of discrete classes. The classification problem for decision tree is 
defined as follows: construct a decision tree classifier ܶܦሺܺሻ  so as to satisfy a 
classifying goal ܶܦሺܺሻ ՚  ො, which uses the attribute vector X to provide a predictedݕ
class ݕො. The tree induction builds a tree model from a set of alternatives, minimizing 
the error between predicted class and actual class (1).  
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minimize ∑ ௞ݎ݋ݎݎܧ| |௄௞ୀଵ , ௞ݎ݋ݎݎܧ ݁ݎ݄݁ݓ ൌ ൜1, ݂݅ y௞ෞ ്  y௞0, ݁ݏ݅ݓݎ݄݁ݐ݋          (1) 

The static decision tree learning, i.e. ID3, C4.5, CART, etc., looks for an attribute 
with the best value of heuristic function H(.) as splitting-attribute by greedy search. 
Post-pruning mechanism removes noisy branches so as to minimize an error-based 
cost function after full tree built. Hence, it improves accuracy by reducing tree size. 
The constructed tree model DT searches a global optimal solution from the entire 
dataset D so far timestamp t, where ܦ ൌ ∑ ௜௧ଵܦ . When new data Dt+1 comes at 
timestamp t+1, it re-computes on full data ܦԢ to update DT, where ܦԢ ൌ ∑ ௜௧ାଵଵܦ ܤܪ  . ൌ ටோమ୪୬ ሺభഃሻଶ௡ . (2)

where R is the range of classes distribution and n is the number of instances which 
have fallen into a leaf, ߜ is the confidence to support this evaluation. Different from 
static tree learning, incremental decision tree learning operates continuously arrival 
data D1, D2, ... , Dt. In the t th splitting test, it only scans the newly received data Dt 
and update the sufficient statistics by Hoeffding bound (HB) in (2). Hence 
incremental decision tree is also called Hoeffding tree (HT). Let Xja be the attribute Xj 

with the highest value of H(.), Xjb be the attribute with the second-highest H(.). ∆ܪ ൌ ሺܪ ௝ܺ௔ሻ െ ሺܪ  ௝ܺ௕ሻ is the difference between the two top quality attributes. If ∆ܪ ൐  ,with n samples observed in leaf, while the HB states with probability 1-δ ܤܪ
that Xja is the attribute with highest value in H(.), then the leaf is converted into a 
decision node which splits on Xja .  

The constructed tree is a local optimum that satisfies the data D at timestamp t. 
Said it a local optimum because we never know what are the new arrival data at 
timestamp t+1, even if they contains imperfect values. Let pl be the probability that an 
example that reaches level l in a decision tree falls into a leaf at that level. If HT and 
DT use the same heuristic function for node-splitting evaluation, the possibility that 
the ܪ ఋܶ ് ܶܪሺܧ where ,݌/ߜ is not greater than ܶܦ ് ሻܶܦ ൑  ,Therefore .[4] ݌/ߜ
we can know that: for the full data D, where ܦ ൌ ∑ ௜௧ଵܦ  at timestamp t, an 
incremental tree HTt uses the same H(.) with DT that tree-branches of HTt should be a 
subset of DT that ܪ ௧ܶ ؿ  .at least ݌/ߜ with probability ܶܦ

3 Incrementally Optimized Very Fast Decision Tree (iOVFDT)   

3.1 Metrics    

Here section will provide iOVFDT in detailed. The model is growing incrementally 
so as to update an optimal decision tree under continuously arriving data. Suppose 
that a decision tree optimization problem Π is defined as a tuple (ܺ, ,ܶܪ Φ). The set X 
is a collection of objects to be optimized and the feasible Hoeffding tree ܶܪ solutions 
are subsets of X that collectively achieve a certain optimization goal. The set of all 
feasible solutions is ܶܪ ك 2௑ and Φ: ܶܪ ՜ Թ is a cost function of these solutions. 
The optimal decision tree HT* exists if X and Φ are known, and the subset S is the 
set of solutions meets the objective function where HT* is the optimum in this set. 
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Therefore, the incremental optimization functions can be expressed as a sum of 
several sub-objective cost functions:  Φሺܪ ௫ܶሻ ൌ ڂ Φ஽ሺܪ ௫ܶሻெ஽ୀଵ                          (3) 

where Φ௠ ׷ ܶܪ ՜ Թ is a continuously differentiable function and M is the number 
of objects in the optimization problem. The optimization goal is given in (4): ݉݅݊݅݉݅݁ݖ Φሺܪ ௫ܶሻ ܪ ݋ݐ ݐ݆ܾܿ݁ݑݏ ௫ܶ א ܺ                  (4) 

iOVFDT uses ܶܪሺܺሻ ՜  .ො to predict the class when a new data sample (X, y) arrivesݕ
So far timestamp t, the prediction accuracy ܽܿܿݑ௧  defined as:  ܽܿܿݑ௧ ൌ ∑ ௉௥௘ௗ௜௖௧ሺ஽೔ሻ೟೔సభ |஽೟| ௜ሻܦሺݐܿ݅݀݁ݎܲ (5)                                 ൌ ቊ1, ෝ݇ݕ ݂݅ ൌ ,0݇ݕ ෝ݇ݕ ݂݅ ്  (6)                      ݇ݕ

To measure the utility of the three dimensions via the minimizing function in (4), the 
measure of prediction accuracy is reflected by the prediction error in (7):  Φଵ ൌ ௧݋ݎݎ݁ ൌ 1 െ ௧ݑܿܿܽ                        (7) 

iOVFDT is a new methodology for building a desirable tree model by combining with 
an incremental optimization mechanism and seeking a compact tree model that 
balances the objects of tree size, prediction accuracy and learning time. The proposed 
method finds an optimization function Φሺܪ ௫ܶሻ in (3), where M = 3. When a new data 
arrive, it will be sorted from the root to a leaf in terms of the existing HT model.  

When a leaf is being generated, the tree size grows. A new leaf is created when the 
tree model grows incrementally in terms of newly arrival data. Therefore, up to 
timestamp t the tree size can be defined as:  Φଶ ൌ ௧݁ݖ݅ݏ ൌ ൜݁ݖ݅ݏ௧ିଵ ൅ 1  , ഥܪ∆ ݂݅ ൐ ,         ௧ିଵ݁ݖ݅ݏ ܤܪ  (8)                    ݁ݏ݅ݓݎ݄݁ݐ݋

iOVFDT is a one-pass algorithm that builds a decision model using a single scan over 
the training data. The sufficient statistics that count the number of examples passed to 
an internal node are the only updated elements in the one-pass algorithm. The 
calculation is an incremental process, which tree size is “plus-one” a new splitting-
attribute appears. It consumes little computational resources. Hence, the computation 
speed of this “plus one” operation for a new example passing is supposed as a 
constant value ܴ in the learning process. The number of examples that have passed 
within an interval period of in node splitting control determines the learning time. nmin 
is a fixed value for controlling interval time checking node splitting. Φଷ ൌ ௧݁݉݅ݐ ൌ ܴ ൈ ሺ݊௬ೖ െ  ݊௠௜௡ሻ                    (9) 

Suppose that ݊௬ೖ is the number of examples seen at a leaf yk and the condition that 
checks node-splitting is ݊௬ೖ݉݀݋ ݊௠௜௡ ൌ 0. The learning time of each node splitting 
is the interval period – the time defined in (9) – during which a certain number of 
examples have passed up to timestamp t.  

Returning to the incremental optimization problem, the optimum tree model is the ܪ ௫ܶ structure with the minimum ߶ሺݔሻ. A triangle model is provided to illustrate the 
relationship amongst the three dimensions – the prediction accuracy, the tree size and 
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the learning time. The three dimensions construct a triangle utility function shown in 
Figure 1. A utility function computes the area of this triangle, reflecting a relationship 
amongst the three objects in (10):  

    Φሺܪ ௫ܶሻ ൌ √ଷସ · ሺ݋ݎݎܧ௫ · ௫݁ݖ݅ܵ ൅ ௫݋ݎݎܧ · ܶ݅݉݁௫ ൅ ௫݁ݖ݅ܵ · ܶ݅݉݁௫ሻ   (10) 

 

Fig. 1. A multiple objectives optimization model 

The area of this triangle ߔሺܪ ௫ܶሻ changes when node splitting happens and the HT 
updates. A min-max constraint of the optimization goal in (4) controls the node 
splitting, which ensures that the new tree model keeps a ߔሺܪ ௫ܶሻ  within a 
considerable range. Suppose that ݔܽܯ. Φሺܪ ௫ܶሻ is a HT model with the maximum 
utility so far and ݊݅ܯ. Φሺܪ ௫ܶሻ is a HT model with the minimum utility. The 
optimum model should be within this min-max range, near ݊ܽ݁ܯ. Φሺܪ ௫ܶሻ: ݊ܽ݁ܯ. Φሺܪ ௫ܶሻ ൌ Mୟ୶.஍ሺு்ೣ ሻିெ௜௡.஍ሺு்ೣ ሻଶ                   (11) 

According to the Chernoff bound [8], we know:  |Opt. Φሺܪ ௫ܶכሻ െ .݊ܽ݁ܯ Φሺܪ ௫ܶሻ| ൑ ට୪୬ ሺଵ ఋൗ ሻଶ௡           (12) 

where the range of Φ௫ሺܪ ௫ܶሻ  is within the min-max model and Min. Φሺܪ ௫ܶሻ ൏Opt. Φሺܪ ௫ܶכሻ ൏ Max. Φሺܪ ௫ܶሻ. Therefore, if Φሺܪ ௫ܶሻ goes beyond this constraint, the 
existing HT is not suitable to embrace the new data input and the tree model should 
not be updated. Node-splitting condition is adaptively optimized in iOVFDT such 
that: ∆ܪഥ ൐ .or Opt ܤܪ Φሺܪ ௫ܶכሻ ൐ .ݔܽܯ Φሺܪ ௫ܶሻ or Opt. Φሺܪ ௫ܶכሻ ൏ .݊݅ܯ Φሺܪ ௫ܶሻ, 

3.2 Functional Tree Leaf Integration     

Functional tree leaf [9], can further enhance the prediction accuracy via the embedded 
Naïve Bayes classifier.. In this paper, we embed the functional tree leaf to improve 
the performance of prediction by HT model. When these two extensions – an 
optimized node-splitting condition (∆ܪഥ ൐ .or Opt ܤܪ Φሺܪ ௫ܶכሻ ൐ .ݔܽܯ Φሺܪ ௫ܶሻ or Opt. Φሺܪ ௫ܶכሻ ൏ .݊݅ܯ Φሺܪ ௫ܶሻ) and a refined prediction using the functional tree leaf 
– are used together, the new decision tree model is able to achieve unprecedentedly 
good performance, although the data streams are perturbed by noise and imbalanced 
class distribution.  

For the actual classification, iOVFDT uses a decision tree model ܪ  ܶ to predict the 
class label ݕ௞ෞ with functional tree leaf   when a new sample (X, y) arrives, defined as ܪ  ܶሺܺሻ  ՜  ௞ෞ. The predictions are made according to the observed class distributionݕ
(OCD) in the leaves called functional tree leaf . Originally in VFDT, the prediction 
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uses only the majority class MC. The majority class only considers the counts of the 
class distribution, but not the decisions based on attribute combinations. The naïve 
Bayes NB computes the conditional probabilities of the attribute-values given a 
class at the tree leaves by naïve Bayes network. As a result, the prediction at the leaf 
is refined by the consideration of each attribute’s probabilities. To handle the 
imbalanced class distribution in a data stream, a weighted naïve Bayes WNB and an 
error-adaptive Adaptive are proposed in this paper. These four types of functional tree 
leaves are discussed in following paragraphs. 

Let Sufficient statistics nijk be an incremental count number stored in each node in 
the iOVFDT. Suppose that a node Nodeij in HT is an internal node labeled with 
attribute xij and k is the number of classes distributed in the training data, where k≥2. 
A vector Vij can be constructed from the sufficient statistics nijk in Nodeij, such that Vij 
= {nij1, nij 2…nij k}. Vij is the OCD vector of Nodeij. OCD is used to store the 
distributed class count at each tree node in iOVFDT to keep track of the occurrences 
of the instances of each attribute.  

Majority Class Functional Tree Leaf: In the OCD vector, the majority class MC 
chooses the class with the maximum distribution as the predictive class in a leaf, 
where MC: arg max r = {ni,j,1, ni, j, 2… ni, j, r… ni, j, k}, and where 0<r<k.  

Naïve Bayes Functional Tree Leaf: In the OCD vector Vi,j = {ni,j,1, ni,j,2… ni,j,r… 
ni,j,k}, where r is the number of observed classes and 0<r<k, the naïve Bayes NB 
chooses the class with the maximum possibility, as computed by the naïve Bayes, as 
the predictive class in a leaf. nij,r is updated to n’i,j,r by the naïve Bayes function such 
that ݊’݅,݆,ݎ  ൌ Pሺܺ|݂ܥሻ · Pሺ݂ܥሻ ⁄ Pሺܺሻ, where X is the new arrival instance. Hence, the 

prediction class is NB: arg max r = { n’i,j,1, n’i,j,2… n’i,j,r… n’i,j,k }.  

Weighted Naïve Bayes Functional Tree Leaf: In the OCD vector Vi,j = {ni,j,1, ni,j,2… 
ni,j,r … ni,j,k}, where k is the number of observed classes and 0<r<k, the weighted naïve 
Bayes WNB chooses the class with the maximum possibility, as computed by the 
weighted naïve Bayes, as the predictive class in a leaf. ni,j,r is updated to n’i,j,r by the 

weighted naïve Bayes function such that ݊݅,݆,ݎԢ ൌ ωݎ · Pሺܺ|݂ܥሻ · Pሺ݂ܥሻ ⁄ Pሺܺሻ  , 
where X is the latest received instance and the weight is the probability of class i 
distribution among all the observed samples, such that ߱௥ ൌ ∏ ሺݒ௥ ∑ ௥௞௥ୀଵ⁄௞௥ୀଵݒ ሻ , 
where ni,j,r is the count of class r. Hence, the prediction class is WNB: arg max  
r = { n’i,j,1, n’i,j,2… n’i,j,r… n’i,j,k }. 

Adaptive Functional Tree Leaf: In a leaf, suppose that V 
MC is the OCD with the 

majority class MC; suppose V 
NB is the OCD with the naïve Bayes NB and 

suppose that V 
WNB is the OCD with the weighted naïve Bayes WNB. Suppose that 

y is the true class of a new instance X and E  is the prediction error rate using a  
. E  is calculated by the average E=errori /n, where n is the number of examples 

and errori is the number of examples mis-predicted using . The adaptive 
Functional Tree Leaf chooses the class with the minimum error rate predicted by the 
other three strategies, where Adaptive: arg min = {E MC

, E
NB

, E
WNB}. 
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3.3 Tree-Building Process     

In this section, a pseudo code summaries the process of tree-growth presented in 
previous parts. When new data stream comes, it will be sorted by current HT and 
given a predictive class label. The OCD, which is stored on those pass-by internal 
nodes, is updated. Comparing the predicted class to the actual class, the prediction 
error is updated (Line 1 – 5). If the number of samples seen so far is greater than the 
pre-defined interval number, the node-splitting evaluation should be performed (Line 
7 – 19). If node-splitting condition that the difference of best two values of heuristic 
function H(.) is greater than HB, or the value of optimization function is out of a min-
max range, the attribute with the highest H(.) value should split to a new leaf (Line 12 
– 17). Meanwhile, new model size and learning time are updated by (8) and (9).  
 

Input:       ܦ௧: a data stream (X,y) arriving at timestamp t; 
  H(.): the heuristic function for splitting test; 
  : a strategy of functional tree leaf;      ݊௠௜௡: the minimum interval between node-splitting tests; 
 ;a desired probability for Hoeffding bound :ߜ  
Output: Incremental decision tree HT 

1. A data stream ܦ௧ ൌ ሺܺ,  ;ሻ arrivesݕ
2. If HT isn’t initialized, let HT be a tree with a single leaf 

l (the root); 

3. Sort ܦ௧ from the root to a leaf by HT, using • to give a 
predicted class ݕ௞ෞ ՚   ;ሺܺሻܶܪ

4. Update OCD on each pass-by node; 
5. Compare predicted class ݕ௞ෞ to actual class ݕ௞, and update 

error in (7); 

6. Let ݊௞ be the number of instances seen at the leaf with class 
y
k
.  

7. If all instances seen so far at leaf k don’t belong to the 
same class, and (݊௞ ݉݀݋ ݊௠௜௡ ൌ 0){ 

8.    Update the learning time in (9);  
9.    Let ܺ௔ and ܺ௕ the attributes with highest and the 2nd   

 highest heuristic function H(.).  

10.    Let ∆ܪ ൌ ሺܺ௔ሻܪ െ  ;ሺܺ௕ሻܪ
11.    Compute HB and update Φሺܪ ௧ܶሻ in (3); 
12.    If (∆ܪ ൐ ,ܤܪ ܪΦሺ ݎ݋ ௧ܶሻ ൐ .ݔܽܯ Φሺܶܪሻ, ܪΦሺ ݎ݋ ௧ܶሻ ൏ .݊݅ܯ Φሺܶܪሻ{ 
13.        Replace leaf k by a node splits on ܺ௔; 
14.        Update the tree size in (8); 
15.        If Φሺܪ ௧ܶሻ ൐ .ݔܽܯ Φሺܶܪሻ then ݔܽܯ. Φሺܶܪሻ ൌ  Φሺܪ ௧ܶሻ 
16.        If Φሺܪ ௧ܶሻ ൏ .݊݅ܯ Φሺܶܪሻ then ݊݅ܯ. Φሺܶܪሻ ൌ  Φሺܪ ௧ܶሻ 
17.    } End-if; 
18.    Reset OCD on the new leaf; 
19. } End-if; 
20. Return ܪ ௧ܶ 
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4 Experiment  

4.1 Setup    

In this section, we compared C4.5, MVFDT to iOVFDT tree inductions in order to 
show the difference between global (C4.5) and local (MVFDT, iOVFDT) search 
optimal tree models. The heuristic function for splitting attribute is information gain. 
The experimental platform was built on Java. For C4.5, WEKA [10] tree 
classification J48 was used, both un-pruning and pruning mechanisms; for MVFDT, 
there are loose and strict pruning mechanisms, both of which have been verified to 
outperform VFDT described in [7]; for iOVFDT, it was programmed and integrated 
with MOA [11]. Majority Class (MC), Naïve Bayes (NB), Weighted Naïve Bayes 
(WNB) and Hybrid Adaptive (ADP) functional tree leaves are integrated in iOVFDT. 

The running environment was a Windows 7 PC with an Intel 2.8GHz CPU and 8G 
RAM. Besides, un-pruned and pruned C4.5 algorithms were applied in this 
experiment so as to analyze the tree size. The heuristic evaluation of node-splitting 
was information gain in both methods.  

4.2 Datasets  

The datasets, including discrete, continuous and mixed attributes, were either 
synthetically generated by MOA generator, or downloaded from UCI repository.  

Table 1. The description of experimental datasets 

Data Name #Nominal #Numeric #Class Source Size 
LED24 24 0 10 Synthetic 106 

Waveform 0 21 3 Synthetic 106 

Cover Type 42 12 7 UCI 581,012 

Synthetic Data LED data was generated by MOA. We added 10% noisy data to 
simulate imperfect data streams. The LED24 problem used 24 binary attributes to 
classify 10 different classes. Waveform was generated by the MOA generator. The 
goal of this task was to differentiate between three different classes of Waveform. It 
had 21 numeric attributes contained noise. UCI Data Cover Type was used to predict 
forest cover types from cartographic variables. It is a typical imbalanced class 
distribution data that all are real life samples. 

4.3 Result Analysis     

The performance measurements were evaluated in three aspects: accuracy, tree size 
and learning speed. The measurement of accuracy was 10 folds cross-validation. The 
number of leaves in the tree mode computed tree size. Learning speed was reflected 
by the time taken to build decision tree.  

Discrete Data. Obviously, un-pruned C4.5 resulted lowest accuracy, biggest tree size 
and slowest speed (Figure 2). Hence un-pruned C4.5 had the worst performance in 
this test. Compared with iOVFDT, pruned C4.5 had better accuracy for small data 
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result compares iOVFDT to C4.5 and MVFDT, and we found that: iOVFDT has 
significantly smaller tree size and faster learning speed than C4.5. It also has higher 
accuracy than MVFDT in terms of the three-object incremental optimization 
mechanism. In the second experiment, the dataset is partitioned by interleaving 
segments of perfect and noisy data, so as to simulate existence of local optimums and 
to test the difference between global and local optimal decision trees. In general, 
global optimal decision tree, which was constructed by loading full data to find out a 
global optimal model in C4.5 tree induction, was able to obtain a high accuracy for 
small scale data. Because of multi-scanning over the full dataset, the size of decision 
tree model was very large even pruning was applied and the entire process was 
relatively slow. Local optimal decision tree, which was built by iOVFDT 
incrementally, was demonstrated to be applicable for large or, even infinite datasets. 
The proposed functional tree leaf of Hybrid Adaptive had the best performance in 
synthetic data. Compact tree size and short learning time make incremental model 
practical in real-time applications. The accuracy though may not be the highest, is on 
par with C4.5. By sacrificing slight accuracy, iOVFDT can be effectively used to 
handle infinite streams as well as to build an optimized tree within a short time.  
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