1,337 research outputs found

    MU-TERM: Verify Termination Properties Automatically (System Description)

    Full text link
    [EN] We report on the new version of mu-term, a tool for proving termination properties of variants of rewrite systems, including conditional, context-sensitive, equational, and order-sorted rewrite systems. We follow a unified logic-based approach to describe rewriting computations. The automatic generation of logical models for suitable first-order theories and formulas provide a common basis to implement the proofs.Supported by EU (FEDER), and projects RTI2018-094403-B-C32,PROMETEO/ 2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). MU-TERM: Verify Termination Properties Automatically (System Description). Springer Nature. 436-447. https://doi.org/10.1007/978-3-030-51054-1_28S436447Alarcón, B., et al.: Improving context-sensitive dependency pairs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 636–651. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_44Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. Inf. Comput. 208(8), 922–968 (2010). https://doi.org/10.1016/j.ic.2010.03.003Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_12Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A∨C{A} \vee {C}-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_4Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-8Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://doi.org/10.1007/s10817-007-9087-9Giesl, J., Arts, T.: Verification of erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001). https://doi.org/10.1007/s002000100063Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_12Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-VGutiérrez, R., Lucas, S.: Function calls at frozen positions in termination of context-sensitive rewriting. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 311–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_15Gutiérrez, R., Lucas, S.: Proving termination in the context-sensitive dependency pair framework. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 18–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_3Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility conditions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNAI, vol. 12167, pp. 416–435. Springer, Heidelberg (2020)Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Log. Program. 1998(1), 1–61 (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002). https://doi.org/10.1006/inco.2002.3176Lucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reasoning 60(4), 465–501 (2017). https://doi.org/10.1007/s10817-017-9419-3Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 15–17 July 2008, Valencia, Spain, pp. 108–119. ACM (2008). https://doi.org/10.1145/1389449.1389463Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebraic Methods Program. 86(1), 236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020). https://doi.org/10.1007/s10817-020-09542-3McCune, W.: Prover9 & Mace4. Technical report (2005–2010). http://www.cs.unm.edu/~mccune/prover9/Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002). https://doi.org/10.1007/978-1-4757-3661-8 . http://www.springer.com/computer/swe/book/978-0-387-95250-5Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 92–106. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61735-3_6Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17(1), 23–50 (1994). https://doi.org/10.1006/jsco.1994.1003Zantema, H.: Termination of context-sensitive rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_6

    Using Well-Founded Relations for Proving Operational Termination

    Full text link
    [EN] In this paper, we study operational termination, a proof theoretical notion for capturing the termination behavior of computational systems. We prove that operational termination can be characterized at different levels by means of well- founded relations on specific formulas which can be obtained from the considered system. We show how to obtain such well-founded relations from logical models which can be automatically generated using existing tools.Partially supported by the EU (FEDER), Projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/013.Lucas Alba, S. (2020). Using Well-Founded Relations for Proving Operational Termination. Journal of Automated Reasoning. 64(2):167-195. https://doi.org/10.1007/s10817-019-09514-2S167195642Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10, LNCS, vol. 6486, pp. 201–208, Springer (2011)Aguirre, L., Martí-Oliet, N., Palomino, M., Pita, I.: Sentence-normalized conditional narrowing modulo in rewriting logic and Maude. J. Automat. Reason. 60(4), 421–463 (2018)Arts, T., Giesl, J.: Proving innermost normalisation automatically. In: Proceedings of RTA’97, LNCS, vol. 1232, pp. 157–171, Springer, Berlin (1997)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS, vol. 4350, Springer (2007)Durán, F., Lucas, S., Meseguer, J.: Methods for proving termination of rewriting-based programming languages by transformation. Electron. Notes Theor. Comput. Sci. 248, 93–113 (2009)Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)Falke, S., Kapur, D.: Operational termination of conditional rewriting with built-in numbers and semantic data structures. Electron. Notes Theor. Comput. Sci. 237, 75–90 (2009)Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12, 39–72 (2001)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of LPAR’04, LNAI, vol. 3452, pp. 301–331 (2004)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Proceedings of IJCAR’06, LNAI, vol. 4130, pp. 281–286 (2006)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87, LNCS, vol. 250, pp. 1–22 (1987)Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016)Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Proceedings of RTA 2009, LNCS, vol. 5595, pp. 295–304 (2009)Lalement, R.: Computation as Logic. Masson-Prentice Hall International, Paris (1993)Lucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002)Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16, LNCS, vol. 9942, pp. 1–21 (2016)Lucas, S.: Directions of operational termination. In: Proceedings of PROLE’18. http://hdl.handle.net/11705/PROLE/2018/009 (2018). Accessed 9 Feb 2019Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)McCune, W.: Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/ (2005–2010). Accessed 9 Feb 2019Mendelson, E.: Introduction to Mathematical Logic, 4th edn. Chapman & Hall, London (1997)Meseguer, J.: General logics. In: Logic Colloquium’87, pp. 275–329 (1989)O’Donnell, M.J.: Equational Logic as a Programming Language. The MIT Press, Cambridge (1985)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Berlin (2002)Prawitz, D.: Natural Deduction. A Proof Theoretical Study. Almqvist & Wiksell, 1965. Reprinted by Dover Publications (2006)Rosu, G., Stefanescu, A., Ciobaca, S., Moore, B.M.: One-path reachability logic. In: Proceedings of LICS 2013, pp. 358–367. IEEE Press (2013)Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order Logic. Clarendon Press, Oxford (1991)Schernhammer, F., Gramlich, B.: Characterizing and proving operational termination of deterministic conditional term rewriting systems. J. Log. Algebr. Program. 79, 659–688 (2010)Serbanuta, T., Rosu, G.: Computationally equivalent elimination of conditions. In: Proceedings of RTA’06, LNCS, vol. 4098, pp. 19–34. Springer, Berlin (2006)Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67–69 (1949

    Models for logics and conditional constraints in automated proofs of termination

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13770-4_3Reasoning about termination of declarative programs, which are described by means of a computational logic, requires the definition of appropriate abstractions as semantic models of the logic, and also handling the conditional constraints which are often obtained. The formal treatment of such constraints in automated proofs, often using numeric interpretations and (arithmetic) constraint solving can greatly benefit from appropriate techniques to deal with the conditional (in)equations at stake. Existing results from linear algebra or real algebraic geometry are useful to deal with them but have received only scant attention to date. We investigate the definition and use of numeric models for logics and the resolution of linear and algebraic conditional constraints as unifying techniques for proving termination of declarative programs.Developed during a sabbatical year at UIUC. Supported by projects NSF CNS13-19109, MINECO TIN2010-21062-C02-02 and TIN2013-45732-C4-1-P, and GV BEST/2014/026 and PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2014). Models for logics and conditional constraints in automated proofs of termination. En Artificial Intelligence and Symbolic Computation. Springer Verlag (Germany). 9-20. https://doi.org/10.1007/978-3-319-13770-4_3S920Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using Matrix Interpretations over the Reals in Proofs of Termination. In: Proc. of PROLE 2009, pp. 255–264 (2009)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. of Aut. Reas. 34(4), 325–363 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. J. of Aut. Reas. 40(2-3), 195–220 (2008)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal Termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 110–125. Springer, Heidelberg (2008)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific (1998)Hudak, P., Peyton-Jones, S.J., Wadler, P.: Report on the Functional Programming Language Haskell: a non–strict, purely functional language. Sigplan Notices 27(5), 1–164 (1992)Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Information Processing Letters 95, 446–453 (2005)Lucas, S., Meseguer, J.: Proving Operational Termination of Declarative Programs in General Logics. In: Proc. of PPDP 2014, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: 2D Dependency Pairs for Proving Operational Termination of CTRSs. In: Proc. of WRLA 2014. LNCS, vol. 8663 (to appear, 2014)Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP Framework for CTRSs. In: Selected papers of LOPSTR 2014. LNCS (to appear, 2015)Meseguer, J.: General Logics. In: Ebbinghaus, H.-D., et al. (eds.) Logic Colloquium 1987, pp. 275–329. North-Holland (1989)Nguyen, M.T., de Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination of logic programs. Theory and Practice of Logic Programming 11(1), 33–63 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (April 2002)Prestel, A., Delzell, C.N.: Positive Polynomials. In: From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)Zantema, H.: Termination of Context-Sensitive Rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997

    Towards a Framework for Proving Termination of Maude Programs

    Full text link
    Maude es un lenguaje de programación declarativo basado en la lógica de reescritura que incorpora muchas características que lo hacen muy potente. Sin embargo, a la hora de probar ciertas propiedades computacionales esto conlleva dificultades. La tarea de probar la terminación de sistemas de reesctritura es de hecho bastante dura, pero aplicada a lenguajes de programación reales se concierte en más complicada debido a estas características inherentes. Esto provoca que métodos para probar la terminación de este tipo de programas requieran técnicas específicas y un análisis cuidadoso. Varios trabajos han intentado probar terminación de (un subconjunto de) programas Maude. Sin embargo, todos ellos siguen una aproximación transformacional, donde el programa original es trasformado hasta alcanzar un sistema de reescritura capaz de ser manejado con las técnicas y herramientas de terminación existentes. En la práctica, el hecho de transformar los sistemas originales suele complicar la demostración de la terminación ya que esto introduce nuevos símbolos y reglas en el sistema. En esta tesis, llevamos a cabo el problema de probar terminación de (un subconjunto de) programas Maude mediante métodos directos. Por un lado, nos centramos en la estrategia de Maude. Maude es un lenguaje impaciente donde los argumentos de una función son evaluados siempre antes de la aplicación de la función que los usa. Esta estrategia (conocida como llamada por valor) puede provocar la no terminación si los programas no están escritos cuidadosamente. Por esta razón, Maude (en concreto) incorpora mecanismos para controlar la ejecución de programas como las anotaciones sintácticas que están asociadas a los argumentos de los símbolos. En reescritura, esta estrategia sería conocida como reescritura sensible al contexto innermost (RSCI). Por otro lado, Maude también incorpora la posibilidad de declarar atributos.Alarcón Jiménez, B. (2011). Towards a Framework for Proving Termination of Maude Programs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11003Palanci

    Innermost Termination of Context-Sensitive Rewriting

    Full text link
    Innermost context-sensitive rewriting (CSR) has been proved useful for modeling the computational behavior of programs of algebraic languages like Maude, OBJ, etc, which incorporate an innermost strategy which is used to break down the nondeterminism which is inherent to reduction relations. Furthermore, innermost termination of rewriting is often easier to prove than termination. Thus, under appropriate conditions, a useful strategy for proving termination of rewriting is trying to prove termination of innermost rewriting. This phenomenon has also been investigated for context-sensitive rewriting. Up to now, only few transformation-based methods have been proposed and used to (specifically) prove termination of innermost CSR. Powerful and e cient techniques for proving (innermost) termination of (unrestricted) rewriting like the dependency pair framework have not been considered yet. In this work, we investigate the adaptation of the dependency pair framework to innermost CSR. We provide a suitable notion of innermost context-sensitive dependency pair and show how to extend and adapt the main notions which conform the framework (chain, termination problem, processor, etc.). Thanks to the innermost context-sensitive dependency pairs, we can now use powerful techniques for proving termination of innermost CSR. This is made clear by means of some benchmarks showing that our techniques dramatically improve over previously existing transformational techniques, thus establishing the new state-of-the-art in the area. We have implemented them as part of the termination tool MU-TERM.Alarcón Jiménez, B.; Lucas, S. (2011). Innermost Termination of Context-Sensitive Rewriting. http://hdl.handle.net/10251/1079

    Innermost Termination of Context-Sensitive Rewriting

    Full text link
    Innermost context-sensitive rewriting (CSR) has been proved useful for modeling the computational behavior of programs of algebraic languages like Maude. We adapt the Dependency Pairs Framework to innermost CSR since, up to now, only few transformation-based techniques have been proposed, thus, establishing the new state-of-the-art in the area.Alarcón Jiménez, B. (2008). Innermost Termination of Context-Sensitive Rewriting. http://hdl.handle.net/10251/13630Archivo delegad

    Faithful (meta-)encodings of programmable strategies into term rewriting systems

    Get PDF
    Rewriting is a formalism widely used in computer science and mathematical logic. When using rewriting as a programming or modeling paradigm, the rewrite rules describe the transformations one wants to operate and rewriting strategies are used to con- trol their application. The operational semantics of these strategies are generally accepted and approaches for analyzing the termination of specific strategies have been studied. We propose in this paper a generic encoding of classic control and traversal strategies used in rewrite based languages such as Maude, Stratego and Tom into a plain term rewriting system. The encoding is proven sound and complete and, as a direct consequence, estab- lished termination methods used for term rewriting systems can be applied to analyze the termination of strategy controlled term rewriting systems. We show that the encoding of strategies into term rewriting systems can be easily adapted to handle many-sorted signa- tures and we use a meta-level representation of terms to reduce the size of the encodings. The corresponding implementation in Tom generates term rewriting systems compatible with the syntax of termination tools such as AProVE and TTT2, tools which turned out to be very effective in (dis)proving the termination of the generated term rewriting systems. The approach can also be seen as a generic strategy compiler which can be integrated into languages providing pattern matching primitives; experiments in Tom show that applying our encoding leads to performances comparable to the native Tom strategies

    Applications and extensions of context-sensitive rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of term rewriting which is obtained by imposing replacement restrictions on the arguments of function symbols. It has proven useful to analyze computational properties of programs written in sophisticated rewriting-based programming languages such asCafeOBJ, Haskell, Maude, OBJ*, etc. Also, a number of extensions(e.g., to conditional rewritingor constrained equational systems) and generalizations(e.g., controlled rewritingor forbidden patterns) of context-sensitive rewriting have been proposed. In this paper, we provide an overview of these applications and related issues. (C) 2021 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Applications and extensions of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming. 121:1-33. https://doi.org/10.1016/j.jlamp.2021.10068013312

    Methods for Proving Termination of Rewriting-based Programming Languages by Transformation

    Get PDF
    AbstractDespite the remarkable development of the theory of termination of rewriting, its application to high-level (rewriting-based) programming languages is far from being optimal. This is due to the need for features such as conditional equations and rules, types and subtypes, (possibly programmable) strategies for controlling the execution, matching modulo axioms, and so on, that are used in many programs and tend to place such programs outside the scope of current termination tools. The operational meaning of such features is often formalized in a proof theoretic manner by means of an inference system rather than just by a rewriting relation. The corresponding termination notions can also differ from the standard ones. During the last years we have introduced and implemented different notions and transformation techniques which have been proved useful for proving and disproving termination of such programs by using existing tools for proving termination of (variants of) rewriting. In this paper we provide an overview of our main contributions
    • …
    corecore