15,061 research outputs found

    On the Hilbert Property and the Fundamental Group of Algebraic Varieties

    Full text link
    We review, under a perspective which appears different from previous ones, the so-called Hilbert Property (HP) for an algebraic variety (over a number field); this is linked to Hilbert's Irreducibility Theorem and has important implications, for instance towards the Inverse Galois Problem. We shall observe that the HP is in a sense `opposite' to the Chevalley-Weil Theorem, which concerns unramified covers; this link shall immediately entail the result that the HP can possibly hold only for simply connected varieties (in the appropriate sense). In turn, this leads to new counterexamples to the HP, involving Enriques surfaces. We also prove the HP for a K3 surface related to the above Enriques surface, providing what appears to be the first example of a non-rational variety for which the HP can be proved. We also formulate some general conjectures relating the HP with the topology of algebraic varieties.Comment: 24 page

    Operational identification of the complete class of superlative index numbers: an application of Galois theory

    Get PDF
    We provide an operational identification of the complete class of superlative index numbers to track the exact aggregator functions of economic aggregation theory. If an index number is linearly homogeneous and a second order approximation in a formal manner that we define, we prove the index to be in the superlative index number class of nonparametric functions. Our definition is mathematically equivalent to Diewert’s most general definition. But when operationalized in practice, our definition permits use of the full class, while Diewert’s definition, in practice, spans only a strict subset of the general class. The relationship between the general class and that strict subset is a consequence of Galois theory. Only a very small number of elements of the general class have been found by Diewert’s method, despite the fact that the general class contains an infinite number of functions. We illustrate our operational, general approach by proving for the first time that a particular family of nonparametric functions, including the Sato-Vartia index, is within the superlative index number class.

    Flexibility properties in Complex Analysis and Affine Algebraic Geometry

    Full text link
    In the last decades affine algebraic varieties and Stein manifolds with big (infinite-dimensional) automorphism groups have been intensively studied. Several notions expressing that the automorphisms group is big have been proposed. All of them imply that the manifold in question is an Oka-Forstneri\v{c} manifold. This important notion has also recently merged from the intensive studies around the homotopy principle in Complex Analysis. This homotopy principle, which goes back to the 1930's, has had an enormous impact on the development of the area of Several Complex Variables and the number of its applications is constantly growing. In this overview article we present 3 classes of properties: 1. density property, 2. flexibility 3. Oka-Forstneri\v{c}. For each class we give the relevant definitions, its most significant features and explain the known implications between all these properties. Many difficult mathematical problems could be solved by applying the developed theory, we indicate some of the most spectacular ones.Comment: thanks added, minor correction

    The Structure of Differential Invariants and Differential Cut Elimination

    Full text link
    The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics

    Holomorphic flexibility properties of complex manifolds

    Full text link
    We obtain results on approximation of holomorphic maps by algebraic maps, jet transversality theorems for holomorphic and algebraic maps, and the homotopy principle for holomorphic submersions of Stein manifolds to certain algebraic manifolds.Comment: To appear in Amer. J. Mat
    • …
    corecore