13,240 research outputs found

    Enhanced Cloud Computing Model Using Systematic Approach Towards The Quality Of Service In A Cloud Computing

    Get PDF
    Cloud computing is modrendevelopingtechnoloy which provides on-claim resources in cloud computing envoirnment.  Cloud computing is modern technology which guarantees to provide elastic Infrastructure, resources accessible via the Internet with low cost. Cloud refers to a huge bundle of computing and data resources which can be access to different protocols and interfaces. Cloud service model containsSoftware-as-a-service (SaaS),Infrastructure-as-a service (IaaS), and Platform-as-a-service (PaaS. Cloud users can enjoy these services without knowing the underlying technology behind the cloud. Quality of service playsa vital role in any network while providing efficient resourcesto users. To competitive gain, it is compulsory to cloud computing network operator  to gain  trust of users by providing the best quality of services. Resource virtualization, share pool of resources, on-demand network access, large datacentres, and highly-interactive web applications needs quality of services. In this paper we put an effort to enhance the cloud computing model to show the “Quality as-a-service(QaaS)”layer. This service layer will help the cloud provider how to enhance the quality of service to cloud users to gain competitive advantage over other cloud service providers.  Parameters which are to useto measure the quality of services includeService Response Time, Reliability, Interoperability, Accuracy,Execution time etc

    Application-centric Resource Provisioning for Amazon EC2 Spot Instances

    Full text link
    In late 2009, Amazon introduced spot instances to offer their unused resources at lower cost with reduced reliability. Amazon's spot instances allow customers to bid on unused Amazon EC2 capacity and run those instances for as long as their bid exceeds the current spot price. The spot price changes periodically based on supply and demand, and customers whose bids exceed it gain access to the available spot instances. Customers may expect their services at lower cost with spot instances compared to on-demand or reserved. However the reliability is compromised since the instances(IaaS) providing the service(SaaS) may become unavailable at any time without any notice to the customer. Checkpointing and migration schemes are of great use to cope with such situation. In this paper we study various checkpointing schemes that can be used with spot instances. Also we device some algorithms for checkpointing scheme on top of application-centric resource provisioning framework that increase the reliability while reducing the cost significantly

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape
    • …
    corecore