17 research outputs found

    Throughput analysis of TCP congestion control algorithms in a cloud based collaborative virtual environment

    Get PDF
    Collaborative Virtual Environment (CVE) has become popular in the last few years, this is because CVE is designed to allow geographically distributed users to work together over the network. In CVE the state of the virtual objects is witnessing unprecedentant change. When a user performs an action in CVE, the information of the action needs to be transmitted to other users to maintain consistency in the cooperative work. TCP is the most widely used protocol in the design of CVE, and its throughput deteriorates in the network with large delay. Gital et al, 2014 proposes a cloud based architectural model for improving scalability and consistency in CVE. Therefore, this paper aim at evaluating and comparing the performance of different TCP variant (Tahoe, Reno, New Reno, Vegas, SACK, Fack and Linux) with the cloud based CVE architecture to determine the suitability of each TCP variant for CVE. A comparative analysis between the different TCP variants is presented in terms of throughput verses elapse time, with increasing number of users in the system. TCP with the cloud based model was found to be effective, promising and robust for achieving consistency requirement in CVE system

    Networking Mechanisms for Delay-Sensitive Applications

    Get PDF
    The diversity of applications served by the explosively growing Internet is increasing. In particular, applications that are sensitive to end-to-end packet delays become more common and include telephony, video conferencing, and networked games. While the single best-effort service of the current Internet favors throughput-greedy traffic by equipping congested links with large buffers, long queuing at the congested links hurts the delay-sensitive applications. Furthermore, while numerous alternative architectures have been proposed to offer diverse network services, the innovative alternatives failed to gain widespread end-to-end deployment. This dissertation explores different networking mechanisms for supporting low queueing delay required by delay-sensitive applications. In particular, it considers two different approaches. The first one assumes employing congestion control protocols for the traffic generated by the considered class of applications. The second approach relies on the router operation only and does not require support from end hosts

    High Performance Network Evaluation and Testing

    Get PDF

    Transmission Control Protocol Performance Comparison Using Piggyback Scheme In WLANS

    Get PDF
    The main problem at wireless networks is the overhead at MAC layer; when the data physical rate is increasing it causes increasing the overhead and decreasing at the MAC efficiency. In this study we study the performance comparison of TCP protocol in WLANs with and without using piggyback. The study of results concerning of implemented both mechanisms in NS2 simulator and find out the good performance from this comparison. Based on the results from our experiments show that the Piggyback scheme is one of the efficient ways to reduce the overhead at MAC wireless networks

    TCP performance enhancement in wireless networks via adaptive congestion control and active queue management

    Get PDF
    The transmission control protocol (TCP) exhibits poor performance when used in error-prone wireless networks. Remedy to this problem has been an active research area. However, a widely accepted and adopted solution is yet to emerge. Difficulties of an acceptable solution lie in the areas of compatibility, scalability, computational complexity and the involvement of intermediate routers and switches. This dissertation rexriews the current start-of-the-art solutions to TCP performance enhancement, and pursues an end-to-end solution framework to the problem. The most noticeable cause of the performance degradation of TCP in wireless networks is the higher packet loss rate as compared to that in traditional wired networks. Packet loss type differentiation has been the focus of many proposed TCP performance enhancement schemes. Studies conduced by this dissertation research suggest that besides the standard TCP\u27s inability of discriminating congestion packet losses from losses related to wireless link errors, the standard TCP\u27s additive increase and multiplicative decrease (AIMD) congestion control algorithm itself needs to be redesigned to achieve better performance in wireless, and particularly, high-speed wireless networks. This dissertation proposes a simple, efficient, and effective end-to-end solution framework that enhances TCP\u27s performance through techniques of adaptive congestion control and active queue management. By end-to-end, it means a solution with no requirement of routers being wireless-aware or wireless-specific . TCP-Jersey has been introduced as an implementation of the proposed solution framework, and its performance metrics have been evaluated through extensive simulations. TCP-Jersey consists of an adaptive congestion control algorithm at the source by means of the source\u27s achievable rate estimation (ARE) —an adaptive filter of packet inter-arrival times, a congestion indication algorithm at the links (i.e., AQM) by means of packet marking, and a effective loss differentiation algorithm at the source by careful examination of the congestion marks carried by the duplicate acknowledgment packets (DUPACK). Several improvements to the proposed TCP-Jersey have been investigated, including a more robust ARE algorithm, a less computationally intensive threshold marking algorithm as the AQM link algorithm, a more stable congestion indication function based on virtual capacity at the link, and performance results have been presented and analyzed via extensive simulations of various network configurations. Stability analysis of the proposed ARE-based additive increase and adaptive decrease (AJAD) congestion control algorithm has been conducted and the analytical results have been verified by simulations. Performance of TCP-Jersey has been compared to that of a perfect , but not practical, TCP scheme, and encouraging results have been observed. Finally the framework of the TCP-Jersey\u27s source algorithm has been extended and generalized for rate-based congestion control, as opposed to TCP\u27s window-based congestion control, to provide a design platform for applications, such as real-time multimedia, that do not use TCP as transport protocol yet do need to control network congestion as well as combat packet losses in wireless networks. In conclusion, the framework architecture presented in this dissertation that combines the adaptive congestion control and active queue management in solving the TCP performance degradation problem in wireless networks has been shown as a promising answer to the problem due to its simplistic design philosophy complete compatibility with the current TCP/IP and AQM practice, end-to-end architecture for scalability, and the high effectiveness and low computational overhead. The proposed implementation of the solution framework, namely TCP-Jersey is a modification of the standard TCP protocol rather than a completely new design of the transport protocol. It is an end-to-end approach to address the performance degradation problem since it does not require split mode connection establishment and maintenance using special wireless-aware software agents at the routers. The proposed solution also differs from other solutions that rely on the link layer error notifications for packet loss differentiation. The proposed solution is also unique among other proposed end-to-end solutions in that it differentiates packet losses attributed to wireless link errors from congestion induced packet losses directly from the explicit congestion indication marks in the DUPACK packets, rather than inferring the loss type based on packet delay or delay jitter as in many other proposed solutions; nor by undergoing a computationally expensive off-line training of a classification model (e.g., HMM), or a Bayesian estimation/detection process that requires estimations of a priori loss probability distributions of different loss types. The proposed solution is also scalable and fully compatible to the current practice in Internet congestion control and queue management, but with an additional function of loss type differentiation that effectively enhances TCP\u27s performance over error-prone wireless networks. Limitations of the proposed solution architecture and areas for future researches are also addressed

    Simulation and Evaluation of Wired and Wireless Networks with NS2, NS3 and OMNET++

    Get PDF
    Communication systems are emerging rapidly with the revolutionary growth in terms of networking protocols, wired and wireless technologies, user applications and other IEEE standards. Numbers of industrial as well as academic organizations around the globe are bringing in light new innovations and ideas in the field of communication systems. These innovations and ideas require intense evaluation at initial phases of development with the use of real systems in place. Usually the real systems are expensive and not affordable for the evaluation. In this case, network simulators provide a complete cost-effective testbed for the simulation and evaluation of the underlined innovations and ideas. In past, numerous studies were conducted for the performance evaluation of network simulators based on CPU and memory utilization. However, performance evaluation based on other metrics such as congestion window, throughput, delay, packet delivery ratio and packet loss ratio was not conducted intensively. In this thesis, network simulators such as NS2, NS3 and OMNET++ will be evaluated and compared for wired and wireless networks based on congestion window, throughput, delay, packet delivery and packet loss ratio. In the theoretical part, information will be provided about the wired and wireless networks and mathematical interpretation of various components used for these networks. Furthermore, technical details about the network simulators will be presented including architectural design, programming languages and platform libraries. Advantages and disadvantages of these network simulators will also be highlighted. In the last part, the details about the experiments and analysis conducted for wired and wireless networks will be provided. At the end, findings will be concluded and future prospects of the study will be advised.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    An Introduction to Computer Networks

    Get PDF
    An open textbook for undergraduate and graduate courses on computer networks

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Toward a versatile transport protocol

    Get PDF
    Les travaux présentés dans cette thèse ont pour but d'améliorer la couche transport de l'architecture réseau de l'OSI. La couche transport est de nos jour dominée par l'utilisation de TCP et son contrôle de congestion. Récemment de nouveaux mécanismes de contrôle de congestion ont été proposés. Parmi eux TCP Friendly Rate Control (TFRC) semble être le plus abouti. Cependant, tout comme TCP, ce mécanisme ne prend pas en compte ni les évolutions du réseau ni les nouveaux besoins des applications. La première contribution de cette thèse consiste en une spécialisation de TFRC afin d'obtenir un protocole de transport avisé de la Qualité de Service (QdS) spécialement défini pour des réseaux à QdS offrant une garantie de bande passante. Ce protocole combine un mécanisme de contrôle de congestion orienté QdS qui prend en compte la réservation de bande passante au niveau réseau, avec un service de fiabilité totale afin de proposer un service similaire à TCP. Le résultat de cette composition constitue le premier protocole de transport adapté à des réseau à garantie de bande passante. En même temps que cette expansion de service au niveau réseau, de nouvelles technologies ont été proposées et déployées au niveau physique. Ces nouvelles technologies sont caractérisées par leur affranchissement de support filaire et la mobilité des systèmes terminaux. De plus, elles sont généralement déployées sur des entités où la puissance de calcul et la disponibilité mémoire sont inférieures à celles des ordinateurs personnels. La deuxième contribution de cette thèse est la proposition d'une adaptation de TFRC à ces entités via la proposition d'une version allégée du récepteur. Cette version a été implémentée, évaluée quantitativement et ses nombreux avantages et contributions ont été démontrés par rapport à TFRC. Enfin, nous proposons une optimisation des implémentations actuelles de TFRC. Cette optimisation propose tout d'abord un nouvel algorithme pour l'initialisation du récepteur basé sur l'utilisation de l'algorithme de Newton. Nous proposons aussi l'introduction d'un outil nous permettant d'étudier plus en détails la manière dont est calculé le taux de perte du côté récepteur. ABSTRACT : This thesis presents three main contributions that aim to improve the transport layer of the current networking architecture. The transport layer is nowadays overruled by the use of TCP and its congestion control. Recently new congestion control mechanisms have been proposed. Among them, TCP Friendly Rate Control (TFRC) appears to be one of the most complete. Nevertheless this congestion control mechanism, as TCP, does not take into account either the evolution of the network in terms of Quality of Service and mobility or the evolution of the applications. The first contribution of this thesis is a specialisation TFRC congestion control to propose a QoS-aware Transport Protocol specifically designed to operate over QoS-enabled networks with bandwidth guarantee mechanisms. This protocol combines a QoS-aware congestion control, which takes into account networklevel bandwidth reservations, with full reliability in order mechanism to provide a transport service similar to TCP. As a result, we obtain the guaranteed throughput at the application level where TCP fails. This protocol is the first transport protocol compliant with bandwidth guaranteed networks. At the same time the set of network services expands, new technologies have been proposed and deployed at the physical layer. These new technologies are mainly characterised by communications done without wire constraint and the mobility of the end-systems. Furthermore, these technologies are usually deployed on entities where the CPU power and memory storage are limited. The second contribution of this thesis is therefore to propose an adaptation of TFRC to these entities. This is accomplished with the proposition of a new sender-based version of TFRC. This version has been implemented, evaluated and its numerous contributions and advantages compare to usual TFRC version have been demonstrated. Finally, we proposed an optimisation of actual implementations of TFRC. This optimisation first consists in the proposition of an algorithm based on a numerical analysis of the equation used in TFRC and the use of the Newton's algorithm. We furthermore give a first step, with the introduction of a new framework for TFRC, in order to better understand TFRC behaviour and to optimise the computation of the packet loss rate according to loss probability distribution
    corecore