254 research outputs found

    Detection of selfish manipulation of carrier sensing in 802.11 networks

    Get PDF
    Recently, tuning the clear channel assessment (CCA) threshold in conjunction with power control has been considered for improving the performance of WLANs. However, we show that, CCA tuning can be exploited by selfish nodes to obtain an unfair share of the available bandwidth. Specifically, a selfish entity can manipulate the CCA threshold to ignore ongoing transmissions; this increases the probability of accessing the medium and provides the entity a higher, unfair share of the bandwidth. We experiment on our 802.11 testbed to characterize the effects of CCA tuning on both isolated links and in 802.11 WLAN configurations. We focus on AP-client(s) configurations, proposing a novel approach to detect this misbehavior. A misbehaving client is unlikely to recognize low power receptions as legitimate packets; by intelligently sending low power probe messages, an AP can efficiently detect a misbehaving node. Our key contributions are: 1) We are the first to quantify the impact of selfish CCA tuning via extensive experimentation on various 802.11 configurations. 2) We propose a lightweight scheme for detecting selfish nodes that inappropriately increase their CCAs. 3) We extensively evaluate our system on our testbed; its accuracy is 95 percent while the false positive rate is less than 5 percent. © 2012 IEEE

    Experimental Evaluation of Large Scale WiFi Multicast Rate Control

    Full text link
    WiFi multicast to very large groups has gained attention as a solution for multimedia delivery in crowded areas. Yet, most recently proposed schemes do not provide performance guarantees and none have been tested at scale. To address the issue of providing high multicast throughput with performance guarantees, we present the design and experimental evaluation of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. MuDRA relies on feedback from some nodes collected via a light-weight protocol and dynamically adjusts the rate adaptation response time. Our experimental evaluation of MuDRA on the ORBIT testbed with over 150 nodes shows that MuDRA outperforms other schemes and supports high throughput multicast flows to hundreds of receivers while meeting quality requirements. MuDRA can support multiple high quality video streams, where 90% of the nodes report excellent or very good video quality

    Design and analysis of MAC protocols for wireless networks

    Get PDF
    During the last few years, wireless networking has attracted much of the research and industry interest. In addition, almost all current wireless devices are based on the IEEE 802.11 and IEEE 802.16 standards for the local and metropolitan area networks (LAN/MAN) respectively. Both of these standards define the medium access control layer (MAC) and physical layer (PHY) parts of a wireless user. In a wireless network, the MAC protocol plays a significant role in determining the performance of the whole network and individual users. Accordingly, many challenges are addressed by research to improve the performance of MAC operations in IEEE 802.11 and IEEE 802.16 standards. Such performance is measured using different metrics like the throughput, fairness, delay, utilization, and drop rate. We propose new protocols and solutions to enhance the performance of an IEEE 802.11 WLAN (wireless LAN) network, and to enhance the utilization of an IEEE 802.16e WMAN (wireless MAN). First, we propose a new protocol called HDCF (High-performance Distributed Coordination Function), to address the problem of wasted time, or idle slots and collided frames, in contention resolution of the IEEE 802.11 DCF. Second, we propose a simple protocol that enhances the performance of DCF in the existence of the hidden terminal problem. Opposite to other approaches, the proposed protocol attempts to benefit from the hidden terminal problem. Third, we propose two variants of a simple though effective distributed scheme, called NZ-ACK (Non Zero-Acknowledgement), to address the effects of coexisting IEEE 802.11e EDCA and IEEE 802.11 DCF devices. Finally, we investigate encouraging ertPS (enhanced real time Polling Service) connections, in an IEEE 802.16e, network to benefit from contention, and we aim at improving the network performance without violating any delay requirements of voice applications

    VoIP Call Admission Control in WLANs in Presence of Elastic Traffic

    Get PDF
    VoIP service over WLAN networks is a promising alternative to provide mobile voice communications. However, several performance problems appear due to i) heavy protocol overheads, ii) unfairness and asymmetry between the uplink and downlink flows, and iii) the coexistence with other traffic flows. This paper addresses the performance of VoIP communications with simultaneous presence of bidirectional TCP traffic, and shows how the presence of elastic flows drastically reduces the capacity of the system. To solve this limitation a simple solution is proposed using an adaptive Admission and Rate Control algorithm which tunes the BEB (Binary Exponential Backoff) parameters. Analytical results are obtained by using an IEEE 802.11e user centric queuing model based on a bulk service M=G[1;B]=1=K queue, which is able to capture the main dynamics of the EDCA-based traffic differentiation parameters (AIFS, BEB and TXOP). The results show that the improvement achieved by our scheme on the overall VoIP performance is significant

    Providing service guarantees in 802.11e EDCA WLANs with legacy stations

    Get PDF
    Although the EDCA access mechanism of the 802.11e standard supports legacy DCF stations, the presence of DCF stations in the WLAN jeopardizes the provisioning of the service guarantees committed to the EDCA stations. The reason is that DCF stations compete with Contention Windows (CWs) that are predefined and cannot be modified, and as a result, the impact of the DCF stations on the service received by the EDCA stations cannot be controlled. In this paper, we address the problem of providing throughput guarantees to EDCA stations in a WLAN in which EDCA and DCF stations coexist. To this aim, we propose a technique that, implemented at the Access Point (AP), mitigates the impact of DCF stations on EDCA by skipping with a certain probability the Ack reply to a frame from a DCF station. When missing the Ack, the DCF station increases its CW, and thus, our technique allows us to have some control over the CWs of the legacy DCF stations. In our approach, the probability of skipping an Ack frame is dynamically adjusted by means of an adaptive algorithm. This algorithm is based on a widely used controller from classical control theory, namely a Proportional Controller. In order to find an adequate configuration of the controller, we conduct a control-theoretic analysis of the system. Simulation results show that the proposed approach is effective in providing throughput guarantees to EDCA stations in presence of DCF stations.European Community's Seventh Framework ProgramPartly funded by the Ministry of Science and Innovation of Spain, under the QUARTET project (TIN2009-13992-C02-01)Publicad
    corecore